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Neutrino Mass Spectrum

ν3

νe νµ ντ

Normal Hierarchy Inverted Hierarchy

ν3

ν
1

ν1

ν2

ν2

|Uµi|2 |Uτi|2|Uei|2

Δm2
atm

Δm2
sol

Two mass splittings:
Large (Δm2

atm ):
Atmospheric (up-down asymmetry)
Long baseline

Small (Δm2
sol ):

Solar + reactor

(3 mass eigenstates - assume no νsterile)

• Solar data suggests |Ue2|2~1/3, and thus |Ue1|2~2/3 (unitarity and small |Ue3|2 ).

• Also, data suggests νµ → ντ  dominant at Δm2
atm and maximal mixing angle, 

  |Uµi|2 ~|Uτi|2

 |Ue3|2 is not known (bounded by reactor expts) and neither is the sign of Δm2
atm  

which determines whether the ν mass hierarchy is normal or inverted.



Matter Effects
✦      propagating in matter interact through W (      only) or Z (all flavors) 

exchange, giving rise to an interaction potential:
                                                                 (W exchange)

✦ The sign of V is opposite for    
➡ Oscillation probabilities in matter are modified

➡ Matter alters    ,      oscillations differently 
➡ Depending on mass hierarchy,      or       oscillations are enhanced (or 

suppressed)         matter induced asymmetry
➡ Resonant effects occur

ν νe

ν̄
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The parameter x is a measure of the importance of the matter effect relative to that of the neutrino squared-mass

splitting.

If we define

∆m2
M ≡ ∆m2

√

sin2 2θ + (cos 2θ − x)2 (35)

and

sin2 2θM ≡
sin2 2θ

sin2 2θ + (cos 2θ − x)2
, (36)

then HM can be written as

HM =
∆m2

M

4E

[

− cos 2θM sin 2θM

sin 2θM cos 2θM

]

. (37)

That is, the Hamiltonian in matter, HM , is identical to its vacuum counterpart, HVac, Eq. (25), except that the

vacuum parameters ∆m2 and θ are replaced, respectively, by ∆m2
M and θM .

Needless to say, the eigenstates of HM differ from their vacuum counterparts. The splitting between the effective

squared-masses of these eigenstates in matter differs from the vacuum splitting ∆m2, and the effective mixing angle

in matter—the angle that determines the νe, νµ composition of the eigenstates in matter—differs from the vacuum

mixing angle θ. Now, all of the physics of neutrino propagation in matter is contained in the matter Hamiltonian

HM . But, according to Eq. (37), HM depends on the parameters ∆m2
M and θM in exactly the same way as the

vacuum Hamiltonian HVac, Eq. (25), depends on ∆m2 and θ. Thus, ∆m2
M must be the splitting between the effective

squared-masses of the eigenstates in matter, and θM must be the effective mixing angle in matter.

In an experiment where an accelerator-generated neutrino beam is sent to a detector that is, say, 1000 km away,

the beam passes through earth matter, but does not penetrate very deeply into the earth. The matter density

encountered by such a beam en route is very roughly constant. Thus, the electron density Ne, hence the parameter

x, hence the matter Hamiltonian HM , is roughly position independent, just like the vacuum Hamiltonian HVac.

Comparing Eqs. (37) and (25), we then see that since HVac leads to the vacuum oscillation probability P(νe → νµ)

of Eq. (30), HM must lead to the in-matter oscillation probability

PM (νe → νµ) = sin2 2θM sin2(∆m2
M

L

4E
) . (38)

That is, the oscillation probability in matter is the same as in vacuum, except for the replacement of the vacuum

parameters θ and ∆m2 by their in-matter equivalents.

How large is the earth matter effect, and what are its consequences? To answer this question, we first note from

Eq. (34) that the parameter x, which measures the relative importance of matter, is proportional to the neutrino

energy E. To estimate the proportionality constant, let us imagine that we have an accelerator-generated neutrino

beam that travels ∼1000 km between its source and its detector. The electron density Ne encountered by such a

beam will be that of the earth’s mantle. The splitting ∆m2 that will dominate the behavior of such a beam will be

the “atmospheric” ∆m2 that also governs the behavior of atmospheric neutrinos, and whose size is approximately

2.4 × 10−3eV2 [6]. Then from Eq. (34)

|x| &
E

12 GeV
. (39)

Thus, in a beam with E, say, 2 GeV, the matter effect is modest but not negligible, while in a beam with E, say, 20

GeV, the matter effect is very large.

We recall that the splitting ∆m2 which appears in Eq. (34) is defined as m2
2 − m2

1, so that, depending on whether

ν2 is heavier or lighter than ν1, ∆m2 is positive or negative. We also recall that if the neutrinos, whose propagation

in matter we have treated explicitly, are replaced by antineutrinos, then the interaction potential energy VW , which

is positive for neutrinos, reverses sign. As a result of these two effects, the sign of x, which for neutrinos is given by
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In writing this expression, we have used p ∼= E, where E is the average energy of the neutrino mass eigenstates in

our highly relativistic beam of momentum p.

It is easy to confirm that the Hamiltonian HVac of Eq. (25) leads to the same two-neutrino oscillation probability,

Eq. (19), as we have already found by other means. For example, consider the oscillation νe → νµ. From the first

row of Eq. (18) for U ,

|νe > = |ν1 > cos θ + |ν2 > sin θ , (26)

while from the second row,

|νµ > = −|ν1 > sin θ + |ν2 > cos θ . (27)

Now, the eigenvalues of HVac, Eq. (25), are

λ1 = −
∆m2

4E
, λ2 = +

∆m2

4E
. (28)

The corresponding eigenvectors, |ν1 > and |ν2 >, are related to |νe > and |νµ > by Eqs. (26) and (27). Thus, with

H the HVac of Eq. (25), the Schrödinger equation of Eq. (22) implies that if at time t = 0 we start with a |νe >, then

after a time t this |νe > will evolve into the state

|ν(t) > = |ν1 > e+i∆m
2

4E
t cos θ + |ν2 > e−i∆m

2

4E
t sin θ . (29)

The probability P(νe → νµ) that this time-evolved neutrino will be detected as a νµ is then, from Eqs. (27) and (29),

P(νe → νµ) = | < νµ|ν(t) > |2

= | sin θ cos θ(−ei∆m
2

4E
t + e−i∆m

2

4E
t)|2

= sin2 2θ sin2(∆m2 L

4E
) . (30)

In the last step, we have replaced our highly-relativistic neutrino’s travel time t by its travel distance L. The flavor

change probability of Eq. (30) does indeed agree with what we found earlier, Eq. (19).

Let us turn now to neutrino propagation in matter. There, the 2×2 vacuum Hamiltonian HVac is replaced by a

matrix HM given by

HM = HVac + VW

[

1 0

0 0

]

+ VZ

[

1 0

0 1

]

. (31)

Here, the second term on the right-hand side is the contribution from the interaction potential energy caused by W

exchange, Eq. (20). Since this energy affects only νe, its contribution is nonvanishing only in the upper left, νe − νe,

element of HM . The last term on the right-hand side of Eq. (31) is the contribution from the interaction potential

energy caused by Z exchange, Eq. (21). Since this energy affects all flavors equally, its contribution to HM is a

multiple of the identity matrix, and consequently can be dropped. Then

HM = HVac +
VW

2

[

1 0

0 −1

]

+
VW

2

[

1 0

0 1

]

, (32)

where we have now split the W -exchange contribution into a piece that is not proportional to the identity, plus a

piece that is proportional to it. Dropping the irrelevant latter piece as well, we have from Eqs. (25) and (32)

HM =
∆m2

4E

[

−(cos 2θ − x) sin 2θ

sin 2θ (cos 2θ − x)

]

, (33)

in which

x ≡
VW /2

∆m2/4E
=

2
√

2GF NeE

∆m2
. (34)
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involves no change in total flux. However, some of the flavors β != α into which a neutrino can transform itself

might be sterile flavors; that is, flavors that do not enjoy normal weak interactions and consequently will not

be detected in any feasible detector. If some of the original neutrino flux becomes sterile, then an experiment

which measures the total active neutrino flux—that is, the sum of the νe, νµ, and ντ fluxes—will find it to be

less than the original flux.

8. In the literature, treatments of neutrino oscillation frequently assume that the different mass eigenstates νi

that contribute coherently to a beam have a common momentum, rather than the common energy that we have

argued they must have. While the assumption of a common momentum is technically incorrect, it is a harmless

error, since, as can easily be shown [5], it leads to the same oscillation probabilities as we have found.

An important special case of the not-so-simple formula for P(
( )
να → ( )

νβ ) in Eq. (15) is the case where only two

different neutrinos are important. The two-neutrino approximation is a fairly accurate description of a number of

experiments. Suppose, then, that only two mass eigenstates, which we shall call ν1 and ν2, and two corresponding

flavor states, which we shall call νe and νµ, are significant. There is then only one squared-mass splitting, m2
2−m2

1 ≡
∆m2. Furthermore, omitting phase factors that can be shown to have no effect on oscillation, the mixing matrix U

takes the simple form

ν1 ν2

U =
νe

νµ

[

cos θ sin θ

− sin θ cos θ

]

.
(18)

Here, the symbols above and to the left of the matrix label its columns and rows. The U of Eq. (18) is just a 2×2

rotation matrix, and the rotation angle θ within it is referred to as the mixing angle. Inserting the U of Eq. (18) and

the single ∆m2 into the general expression for P(
( )
να → ( )

νβ ), Eq. (15), we immediately find that, for β != α, when

only two neutrinos matter,

P(
( )
να → ( )

νβ ) = sin2 2θ sin2(∆m2 L

4E
) . (19)

In addition, the probability that the neutrino does not change flavor is, as usual, unity minus the probability that it

does change flavor.

1.3. Neutrino Flavor Change in Matter

When an accelerator on the earth’s surface sends a beam of neutrinos several hundred kilometers to a waiting

detector, the beam does not travel through a vacuum, but through earth matter. Coherent forward scattering of

the neutrinos in the beam from particles they encounter along the way can then have a large effect. Assuming that

the neutrino interactions with matter are the flavor-conserving ones described by the Standard Model, a neutrino in

matter can undergo coherent forward scattering from ambient particles in two ways. First, if it is a νe—and only if it

is a νe—it can exchange a W boson with an electron. Coherent forward scattering by electrons via W exchange gives

rise to an extra interaction potential energy VW possessed by electron neutrinos in matter. Clearly, this extra energy

from a lowest-order weak interaction will be proportional to GF , the Fermi coupling constant. Equally clearly, this

extra energy from νe − e scattering will be proportional to Ne, the number of electrons per unit volume. From the

Standard Model, we find that

VW = +
√

2 GF Ne , (20)

and that this interaction potential energy changes sign if we replace the νe in the beam by νe.

Secondly, a neutrino in matter can exchange a Z boson with an ambient electron, proton, or neutron. The

Standard Model tells us that any flavor of neutrino can do this, and that the amplitude for this Z exchange is flavor

independent. The Standard Model also tells us that, at zero momentum transfer, the Z couplings to electron and

ν̄ν
ν ν̄

⇒



Oscillation Probabilities 
in  Matter (mantle only)

|Δm2
31|=0.003eV2, sin22θ13 = 0.1, sin2θ23 = 0.64

cosθnadircosθnadir

Eν  = 5 GeV Eν  = 10 GeV

Eν  = 50 GeV

cosθnadir

cosθnadir

cosθnadir cosθnadir

νµ → νµ

νe → νµ

MINOS

θnadir=0o

θnadir=90o



Charge Asymmetry-Atmospheric ν 

The charge asymmetry for neutrino induced muons can be significantly modified by 
matter effects and  it could carry the signature  of the underlying mass hierarchy

Resonant enhancement occurs for       ~7-11 GeV and                  >0.4cos θnadirEν

10 GeV < Eν < 20 GeV3-neutrino oscillations, 2 layers
|Δm2

31|=0.003eV2

 sin22θ13 = 0.1, 

 sin2θ23 = 0.64

core+mantle

mantle only

N(µ−)−N(µ+)
N(µ−) + N(µ+)

cos θnadir

(Ref: J. Bernabeu, S. Palomares, and  S. Petcov, hep-ph/0305152)

MINOS

θnadir=0o

θnadir=90o



Sensitivity Study
The MINOS far detector is the first large underground detector with a magnetic 

field and thus able to discriminate the muon charge 

We explored the possibility of using the atmospheric ν data collected at 
MINOS to discriminate between normal and inverted hierarchy.

 We determine the sensitivity using simulated atmospheric neutrino events       
reconstructed at the MINOS far detector  

 We consider different topologies:

Contained vertex ν  events: ν interaction occurs in the detector (6,500 years 
exposure in the MC) 
Upward-going µ: ν interaction occurs in rock (2,500 years exposure in the MC)



MC Event Selection
 Select upward going CC       interactions with muon energy > 2 GeV
 Require one track. Track must:

  pass the fitter internal consistency checks; have fit 
  contain 40% of the total PH in the event

Contained vtx ν: 


Track vertex  in fiducial volume (50  cm from edge and 5 planes from SM boundaries
track crosses >10 planes and is >1 meter long

σqp/qp < 0.4 or track length > 8 m for better charge separation

     
Up µ: 


Track vertex out of fiducial volume  (30 cm from edge and 15 cm from SM boundaries)
Track crosses >20 planes and is >2 meter long
Track contains 40% of the total number of planes in the event

                    (measures deviation of track from straight line)> 10 for better charge 
separation

       

→  No significant improvement in mass hierarchy discrimination with tighter cuts 
but 15~30% reduction in statistics 

νµ

χ2/ndf < 2

χ2
line/ndf



Charge Asymmetry - MC

Normal hierarchy

Inverted hierarchy

cosθnadir

Contained vtx ν with 10 GeV < Eν < 20 GeV
|Δm2

31|=0.003eV2, sin22θ13 = 0.1, sin2θ23 = 0.64

Good agreement between MC charge asymmetry and theory prediction 

2,500 years exposure; 
100% livetime 

cosθnadir

NH

IH



Event Rates - 100 yrs

N(µ -) and N(µ+) vs cosθnadir for 7 GeV < Eν < 12 GeV:

cosθnadircosθnadir

Eν

cosθnadircosθnadir

Eν

N(µ -) and N(µ+) after 100 years, contained vertex ν, no oscillation:

N(µ+)N(µ-)



Statistical Significance
➡ Statistical significance                                 after 2,500 years: 

cosθnadir

7 < Eν < 12 GeV 

➡Comparable discrimination can be achieved for the two
    topologies

cosθnadir 

Eµ Up µ

cosθnadir

            2 < Eµ < 11 GeV  

cosθnadir 

Eν Cont vtx ν

12665 σ

4563 σ

2032 σ

1001.4 σ

521 σ

# of years
For other exposures:  

(AIH −ANH)
σ

Up µ
Cont vtx ν

|AIH −ANH |/σ



Likelihood Study 

Build likelihood function L to discriminate between normal and 
inverted hierarchy. 
For a given set of data, the ratio R = LNH/LIH measures whether the 
data is more consistent with  the NH or IH hypothesis. 
Generate large number of pseudoexperiments  for a given  exposure 
assuming NH (IH) and  evaluate RNH

 (RIH).
In practice, calculate L=-2ln(L) and determine ΔL = LNH –LIH (the test 
statistics) 
The larger the separation between the two distributions (ΔLNH and 
ΔLIH), the better the two mass hierarchies can be discriminated.
Determine the 95% C.L. sensitivity for rejecting IH(NH) by 
calculating the fraction of pseudoexperiments generated assuming NH
(IH) with less than 5% IH(NH) contamination.
Repeat for different exposures and values of                 and  sin2 2θ13 sin2 θ23



Likelihood Function  

  Fix all oscillation parameters, except for the  sign of Δm2
31 and consider the 

following values of:

 Unbinned likelihood for contained vtx ν and upward going µ:

λ  : expected number of µ. Depend on oscillation parameters.

Ν   : observed number of µ. 

f  : normalized shapes of       rates as a function of cosθ nadirvs E distributions.
     Depend on oscillation parameters.

Poisson constraints on total numbers of events

Shape constraints

L =
(λ−)N−eλ−

N−!
×

N−∏

i=1

f−(Ei, cos θnadir,i)×
(λ+)N+

eλ+

N+!
×

N+∏

i=1

f+(Ei, cos θnadir,i)

µ

sin2 θ23 = 0.5, 0.64sin2 2θ13 = 0.05, 0.1, 0.15



Pseudoexperiments
 Generate number of events (µ+,µ-, for cont vtx ν and up µ)                    

according to Poisson statistics for a given exposure.
Interpolate cosθnadir vs energy MC distributions and randomly generate  

cosθnadir,  E for each event according to these shapes and both hierarchies.

 Determine  ΔLNH and ΔLIH  for each pseudoexperiment
 Repeat for several exposures and values of the mixing angles

Contained vtx ν Up µ

sin2 2θ13 = 0.1, sin2 θ13 = 0.64, µ−, NH

Eν Eµ cos θnadircos θnadir



ΔL for Cont vtx ν-10 yrs

Poisson constraint only

ΔL

# 
of

 p
se

ud
oe

xp
ts

Poisson+Shape constraint

➡Better discrimination achieved by making use of shape information in 
the likelihood

0.10 0.64
0.15 0.64
0.05 0.64
0.10 0.50
0.15 0.50
0.05 0.50

sin2 2θ13 sin2 θ23

Compare ΔL for NH (dashed) and IH (solid) hypotheses

∆m2
31

∆m2
31< 0

>0



ΔL for Cont vtx ν-50 yrs

ΔL

# 
of

 p
se

ud
oe

xp
ts

➡As expected, discrimination improves for larger sin2 2θ13

Poisson constraint only Poisson+Shape constraint

0.10 0.64
0.15 0.64
0.05 0.64
0.10 0.50
0.15 0.50
0.05 0.50

sin2 2θ13 sin2 θ23

∆m2
31

∆m2
31< 0

>0



Combined ΔL -10 yrs

➡Further improvement is obtained by combining the contained
vertex ν sample with the upgoing µ sample 

ΔL

# 
of

 p
se

ud
oe

xp
ts

Cont vtx ν only Combined
0.10 0.64
0.15 0.64
0.05 0.64
0.10 0.50
0.15 0.50
0.05 0.50

sin2 2θ13 sin2 θ23

∆m2
31

∆m2
31< 0

>0



Sensitivity-Combined

➡ Similar sensitivity achieved for NH and IH
➡ Need over 10 years of running, if oscillation parameters are favorable,   
for a >50% chance to determine the mass hierarchy at 95% C.L. 

Exposure (years)

0.10 0.64
0.15 0.64
0.05 0.64
0.10 0.50
0.15 0.50
0.05 0.50

sin2 2θ13 sin2 θ23

∆m2
31

∆m2
31< 0

>0%
 d

is
cr

im
in

at
io

n



Sensitivity-Unsmeared

Smeared

Exposure (years)

Contained vtx ν only 

Unsmeared

0.10 0.64
0.15 0.64
0.05 0.64
0.10 0.50
0.15 0.50
0.05 0.50

sin2 2θ13 sin2 θ23

∆m2
31

∆m2
31< 0

>0

%
 d

is
cr

im
in

at
io

n



Summary 

We have studied the sensitivity of the MINOS far detector to discriminate 
the neutrino mass hierarchy using simulated atmospheric neutrinos 
(contained vertex ν events and upward going µ) reconstructed at the far 
detector

We have determined the sensitivity as a function of the exposure,                                              
                    

We find that the sensitivity is comparable for NH and IH, and it improves 
significantly if                    is large
 The analysis reveals that >10 years of exposure at the MINOS far detector 
would be needed to discriminate between mass hierarchies at 95%  C.L.

∆m2
31

sin2 2θ13

sin2 θ23sin2 2θ13 and the sign of ,



BACKUP



Far Detector :
Atmospheric Neutrino Oscillations

 The MINOS far detector is the first large 
magnetized underground detector. Installation 
completed in July 2003.

 Veto shield used to reject cosmic rays for 
atmospheric ν analysis 

 L/E analysis excludes no oscillations at 98% CL

 First measurement of atmospheric  νµ vs. νµ  

oscillations

ΜC assumes ν and ν oscillate in the same way

      Phys. Rev. D73, 072002 (2006)


