Measurements of $|V_{ub}|$ at BABAR

Kris Chaisanguanthum Harvard University / BABAR

Tuesday 31 October 2006 Joint Meeting of Pacific Region Particle Physics Communities

overview

- 1) Measurement of the Inclusive Electron Spectrum in Charmless Semileptonic *B* Decays Near the Kinematic Endpoint and Determination of $|V_{ub}|$ *BABAR* Collaboration, B. Aubert & al, Phys. Rev. **D73**, 012006 (2006).
- 2) Determinations of $|V_{ub}|$ from Inclusive Semileptonic *B* Decays with Reduced Model Dependence *BABAR* Collaboration, B. Aubert & al, Phys. Rev. Lett. **96**, 221801 (2006).
- 3) Measurement of the $B^0 \rightarrow \pi^- l^+ \nu$ Form Factor Shape and Branching Fraction, and Determination of $|V_{ub}|$ with a Loose Neutrino Reconstruction Technique ICHEP 2006 (hep-ex/0607060).
- 4) Measurement of the $B \rightarrow \pi l \nu$ Branching Fraction and Determination of $|V_{ub}|$ with Tagged *B* Mesons Accepted by Phys. Rev. Lett. (hep-ex/0607089).
- 5) Measurement of the $B^+ \rightarrow \eta l^+ \nu$ and $B^+ \rightarrow \eta' l^+ \nu$ Branching Fractions using $\Upsilon(4S) \rightarrow B\overline{B}$ Events Tagged by a Fully Reconstructed *B* Meson ICHEP 2006 (hep-ex/0607066).

 $|V_{ub}|$

Chaisanguanthum / Measurements of $|V_{ub}|$ at BABAR / 31 October 2006 / 3

ARVARD

BABAR / PEP-II

BABAR / BABAR

Using

- $2.0 < p_e < 2.6 \text{ GeV/}c$,
- Bosch, Lange, Neubert, Paz differential decay rate calculation [2], and
- shape function parameters (non-perturbative QCD corrections) from combined fit to BABAR moments [3],

we extract:

$$\begin{split} \mathcal{B}(B \to X_u e\nu) &= (2.27 \pm 0.26_{\text{exp}} ^{+0.33}_{-0.28} \text{SF} \pm 0.17_{\text{theory}}) \times 10^{-3}, \\ |V_{ub}| &= (4.44 \pm 0.25_{\text{exp}} ^{+0.42}_{-0.38} \text{SF} \pm 0.22_{\text{theory}}) \times 10^{-3}. \\ \text{(for 88M } B\overline{B}\text{)}. \end{split}$$

- The dominant experimental error is from event selection efficiency (sensitivity to cuts).
- We get comparable results when using smaller momentum range and/or other differential decay rate calculations and/or different shape function inputs.

hadronically reconstructed $B_r \rightarrow D^{(*)}Y$

- reconstruct *D* hadronically, $D^* \rightarrow D\pi$, $D\pi^0$, $D\gamma$
- $q_Y = \pm 1$, some combination of π^{\pm} , K^{\pm} , π^0 , K_S^0
- select on $\Delta E \equiv E_B \sqrt{s/2}$

 $\varepsilon_{B0} = 0.3\%$, $\varepsilon_{B\pm} = 0.5\%$

for $B_{\rm sl}$, require:

• hard $(p_l^* > 1 \text{ GeV}/c)$ lepton $(\{e, \mu\})$

•
$$Q_{\text{total}} = 0$$

• consistent with v hypothesis:

 $-1.0 < m_{\text{miss}}^2 < 0.5 \text{ GeV}^2/c^4$, $|\mathbf{p}_{\text{miss}}| > 0.3 \text{ GeV}/c$ $|\cos \theta_{\text{miss}}| < 0.95$

reject events with K^{\pm} , $K_{\rm S}^{0}$ ($\rightarrow \pi^{+}\pi^{-}$) in X (suppresses $X = X_{c}$)

 m_X is calculated with full kinematic fit $\sigma_{mX} \sim 250 \text{ MeV}/c^2$

From data and MC components ($X = X_u$, $X = X_c$, "other"), combinatorial (5-25%) background is removed via UML $m_{\rm ES} \equiv \sqrt{(s/4-|\mathbf{p}_B|^2)}$ fit (separately for each m_X bin (300 MeV/ c^2)).

Yield is extracted via binned χ^2 fit (sum of MC components to data) on m_X :

experimental errors (on $|V_{ub}|$):

	$ V_{ub} $ extraction method			
	<u>LLR</u> †	<u>full rate‡</u>		
statistical	7.7%	18.2%		
detector systematics	3.3%	3.6%		
dominated by combinatoric subtraction				
background simulation dominated by uncertainty on	1.0%	3.8%		
$B \rightarrow D^* lvX, B \rightarrow D^{**} lvX$ branching fractions				
signal simulation	3.9%	5.6%		
RI		† See p13. ‡ See p12.		
Chaisanguanthum / Measurements of $ V_{ub} $ at BABAR	/ 31 October 200	06 / 11		

alternate $|V_{ub}|$ extraction (due to Leibovich, Low & Rothstein [5]): $|V_{ub}|$ in terms of γ , l spectra from $B \rightarrow X_s \gamma$, $B \rightarrow X_u l \nu$ (B structure function independent)

$$B^0 o \pi^{‐} l^+
u$$

require l^{\pm} ($p_e > 0.5 \text{ GeV}/c$, $p_{\mu} > 0.8 \text{ GeV}/c$), π^{\mp}

- tight PID
- vertex χ^2 probability > 0.01
- $|\cos \theta_{BY}| < 1$

suppress non- $B\overline{B}$ backgrounds:

- require ≥ 4 tracks
- cut on event shape variables
- explicitly reject radiative Bhabha, γ conversion

Where
$$P_Y \equiv P_l + P_{\pi}$$
, using nominal p_B
and assuming $m_v = 0$,
 $\cos(\theta_{BY}) = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2p_B p_Y}$

 $B^0 \rightarrow \pi^- l^+ \nu$

Looser v quality cuts increase acceptance.

Rather than assume $P_v = P_{\text{miss}}$, \vec{q}^2 ("raw" q^2) is calculated via:

 $\bar{q}^2 \equiv (P_B - P_\pi)^2$

 $B^0 \rightarrow \pi^- l^+ \nu$

$B\overline{B}$ -background rejection

- reject $J/\psi \to \mu\mu$ (3.07 < m_Y < 3.13 GeV/ c^2)
- \vec{q}^2 -dependent cuts (to maximize $S/\sqrt{(S+B)}$) on W helicity angle (θ_l) ; angle between Y, event thrust axes (θ_{thrust}) ; missing mass; missing energy direction
- $|\Delta E| < 1.0 \text{ GeV}$
- $m_{\rm ES} > 5.19 \; {\rm GeV}/c^2$

In events with multiple candidates, the one with smallest $|\cos \theta_l|$ is taken.

overall signal efficiency: 6.6 - 9.7%

 $B^0 \rightarrow \pi^- l^+ \nu$

three-dimensional (ΔE - $m_{\rm ES}$, \vec{q}^2) extended binned ML fit of PDFs (MC) to data

over 227.4M *BB***:**

signal yield (events): 5047 ± 251 $b \rightarrow ulv$: 10015 ± 548 other $B\overline{B}$ background: 32788 ± 445 continuum: 9801 ± 467

 $\chi^2 = 428 / 388$ d.o.f.

After $\bar{q}^2 \Rightarrow q^2$ unfolding, $f^+(q^2)$ is evaluated from normalized spectrum $\Delta \mathcal{B}(q^2)/\mathcal{B}$.

E.g., we do fit to Becirevic-Kaidolov $f^{+}(q^{2},\alpha)$ parameterization [7]:

$$f^+(q^2,\alpha) = \frac{f_0}{(1-q^2/m_{B^*}^2)(1-\alpha q^2/m_{B^*}^2)}$$

 $B^0 \rightarrow \pi^- l^+ \nu$

q^2 intervals (GeV ² / c^4)	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14 - 16	16-18	18-20	20-22	22 - 26.4	Total	$q^2 < 16$	$q^2 > 16$
fitted BF	113.2	151.1	144.6	131.8	149.3	115.7	177.8	87.7	122.7	63.3	107.6	78.7	1443.6	1071.2	372.4
fitted yield stat err	22.9	-20.0	19.9	20.1	22.8	21.5	24.3	20.8	23.4	19.5	20.0	20.1	83.4	63.3	44.1
trk eff	14.7	1.5	6.1	3.3	3.7	3.4	4.4	4.0	2.4	4.6	1.3	4.4	40.3	39.7	4.5
γ eff	15.2	1.0	5.3	7.0	3.3	9.0	7.3	4.3	3.2	4.0	2.8	1.9	56.9	50.9	6.7
K_L^0 eff & E	1.6	1.0	1.1	1.4	1.5	0.8	2.2	1.6	1.7	1.5	1.2	1.8	7.1	5.2	3.7
Y PID & trk eff	2.3	2.9	2.1	2.8	2.3	1.7	3.4	1.5	2.3	0.9	1.9	1.8	22.1	15.8	6.5
continuum yield	3.2	0.6	0.4	0.1	0.1	0.2	0.2	0.6	0.6	1.3	0.8	2.1	4.2	2.2	4.6
continuum \tilde{q}^2	12.9	2.3	1.8	1.2	1.5	1.3	1.1	2.0	2.2	3.6	3.9	8.4	8.8	8.8	12.4
continuum m_{ES}	6.1	0.6	0.4	0.1	0.9	0.6	0.1	0.7	0.5	1.1	1.2	2.0	12.4	7.7	4.7
continuum ΔE	2.6	2.2	0.6	1.4	2.4	0.5	0.4	1.0	0.7	1.4	3.4	3.3	17.8	0.2	8.6
$D o K^0_L { m BF}$	8.1	6.3	8.2	3.3	3.9	4.5	3.4	4.6	5.5	4.9	4.3	4.5	51.6	34.2	17.5
$b ightarrow c \ell u \; { m BF}$	3.0	2.6	1.5	2.8	6.2	1.2	4.3	2.0	1.7	2.7	1.5	1.6	17.0	13.2	5.0
$b ightarrow u \ell u ext{ BF}$	1.7	1.8	1.1	1.0	1.6	1.6	2.0	1.5	1.7	2.9	7.9	7.5	16.6	9.6	11.5
$\Upsilon(4S) o B^0 B^0 \; { m BF}$	2.3	3.3	2.3	2.0	2.1	1.9	2.9	1.1	2.0	0.8	2.4	1.4	23.9	17.7	6.3
$B o D^* \ell u ~ { m FF}$	1.7	1.3	0.2	2.0	4.0	1.0	2.6	0.9	1.0	0.8	0.8	2.5	12.5	10.2	2.7
$B ightarrow ho \ell u ~{ m FF}$	4.0	1.2	3.4	1.7	1.1	1.7	2.6	3.9	1.3	1.9	1.6	3.5	18.3	14.4	5.7
$B^0 o \pi^- \ell^+ u { m FF}$	-1.2	-0.0	0.3	0.1	0.3	0.0	0.7	-0.3	-0.2	-1.3	1.6	4.5	4.7	0.0	4.7
signal MC stat error	1.8	2.6	2.4	2.6	2.4	2.3	2.6	1.5	1.7	1.1	1.3	1.1	5.5	5.1	2.2
B counting	1.2	1.7	1.6	1.5	1.6	1.3	2.0	1.0	1.4	0.7	1.2	0.9	15.9	11.8	4.1
total syst error	28.0	9.8	13.1	10.6	11.3	11.7	12.5	9.7	8.8	10.3	11.8	15.6	102.7	83.0	31.3
total error	36.2	22.3	23.8	22.7	25.5	24.5	27.3	23.0	25.1	22.1	23.3	25.4	132.3	104.4	54.1

Partial $\Delta \mathcal{B}(B^0 \to \pi^- \ell^+ \nu, q^2)$ and total $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu)$ (×10⁷) and their errors (×10⁷) from all sources.

Errors from background BFs/FFs are suppressed by q^2 fit procedure.

 $R^0 \rightarrow \pi^- l^+ \nu$

We obtain, e.g., $\mathcal{B}(B^0 \to \pi^- l^+ \nu) = (1.44 \pm 0.08_{\text{stat}} \pm 0.10_{\text{syst}}) \times 10^{-4},$ $|V_{ub}| = (4.1 \pm 0.2_{\text{stat}} \pm 0.2_{\text{syst}-0.4} \text{ FF}) \times 10^{-3}$

($|V_{ub}|$ using the most recent LQCD calculation [8], $q^2 > 16 \text{ GeV}^2/c^4$).

$B \to \pi l \nu$

$B \to \pi l \nu$

 $B \to \pi l \mathbf{v}$ in the recoil of a hadronically decaying B

- hadronic reconstruction of B (cp. m_X analysis)
- look for decay products consistent with πl

fully reconstructed v:

For $m_{\rm miss}^2$ signal region, UML fit on $m_{\rm ES}$.

Peaking backgrounds are subtracted via MC normalized to m_{miss}^2 sideband.

Yield normalized to $B \rightarrow X l v$ decays.

$B \to \pi l \nu$

 $B \rightarrow \pi l \nu$ analyses are done on $\sim 232 \text{M} B\overline{B}$, divided into $q^2 \equiv (P_l + P_{\nu})^2$ (GeV²/c⁴) bins, yielding the branching fractions (10⁻⁴):

		$q^2 < 8$	$8 < q^2 < 16$	$q^2 > 16$	$q^2 < 16$	Total
B^0	Semileptonic	$0.50 \pm 0.16 \pm 0.05$	$0.33 \pm 0.14 \pm 0.04$	$0.29 \pm 0.15 \pm 0.04$	$0.83 \pm 0.22 \pm 0.08$	$1.12 \pm 0.25 \pm 0.10$
	Hadronic	$0.09 \pm 0.10 \pm 0.02$	$0.33 \pm 0.15 \pm 0.05$	$0.65 \pm 0.20 \pm 0.13$	$0.42 \pm 0.18 \pm 0.05$	$1.07 \pm 0.27 \pm 0.15$
	Average	$0.38 \pm 0.12 \pm 0.04$	$0.33 \pm 0.10 \pm 0.03$	$0.47 \pm 0.13 \pm 0.06$	$0.72 \pm 0.16 \pm 0.06$	$1.19 \pm 0.20 \pm 0.10$
B^+	Semileptonic	$0.18 \pm 0.08 \pm 0.02$	$0.45 \pm 0.13 \pm 0.05$	$0.10 \pm 0.12 \pm 0.04$	$0.63 \pm 0.16 \pm 0.06$	$0.73 \pm 0.18 \pm 0.10$
	Hadronic	$0.16 \pm 0.11 \pm 0.03$	$0.39 \pm 0.16 \pm 0.06$	$0.26 \pm 0.12 \pm 0.06$	$0.56 \pm 0.19 \pm 0.08$	$0.82 \pm 0.22 \pm 0.11$
	Average	$0.18 \pm 0.07 \pm 0.02$	$0.43 \pm 0.10 \pm 0.04$	$0.22 \pm 0.09 \pm 0.05$	$0.61 \pm 0.12 \pm 0.05$	$0.82 \pm 0.15 \pm 0.09$
Con	nbined	$0.36 \pm 0.09 \pm 0.03$	$0.52 \pm 0.10 \pm 0.04$	$0.46 \pm 0.10 \pm 0.06$	$0.87 \pm 0.13 \pm 0.06$	$1.33 \pm 0.17 \pm 0.11$

(Assuming isospin relation $\Gamma(B^0 \to \pi^- l^+ \nu) = 2\Gamma(B^+ \to \pi^0 l^+ \nu)$; "Combined" expressed as $\mathcal{B}(B^0 \to \pi^- l^+ \nu)$.)

e.g.: $\mathcal{B}(B^0 \to \pi^- l^+ \nu) = (1.33 \pm 0.17_{\text{stat}} \pm 0.11_{\text{syst}}) \times 10^{-4},$ $|V_{ub}| = (4.5 \pm 0.5_{\text{stat}} \pm 0.3_{\text{syst}-0.5} \text{ FF}) \times 10^{-3}$

> extracting $|V_{ub}|$ via lattice QCD [8], $q^2 > 16 \text{ GeV}^2/c^4$.

$$B^+ \rightarrow \eta^{(\prime)} l^+ \nu$$

summary

summary

references

- [1] BABAR Collaboration, B. Aubert & al., Nucl. Instr. Meth. A479, 1 (2002).
- [2] B. Lange, M. Neubert & G. Paz, Theory of Charmless Inclusive B Decays and the Extraction of |V_{ub}|. hep-ph/0504071 (2005).
- [3] O. Buchmüller & H. Flächer, Fits to Moment Measurements from B→X_clv and B→X_sγ Decays Using Heavy Quark Expansions in the Kinetic Scheme. hep-ph/0507253 (2005).
- [4] Particle Data Group Collaboration, S. Eidelman & al., Phys. Lett. **B592**, 1 (2004).
- [5] A.K. Leibovich, I. Low & I. Z. Rothstein, Phys. Rev. D61, 053006 (2000); D62, 014010 (2000); Phys Lett. B486, 86 (2000); B513, 83 (2001).
- [6] BABAR Collaboration, B. Aubert & al., Phys. Rev. D72, 052004 (2005).
- [7] D. Becirevic & A. B. Kaidalov, Phys. Lett. B478, 417 (2000).
- [8] HPQCD Collaboration, E. Gulez & al., Phys. Rev. D73, 074502 (2006).
- [9] D. Scora & N. Isgur, Phys. Rev. **D52**, 2783 (1995).
- [10] P. Ball & R. Zwicky, Phys. Rev. D71, 014015 (2005).
- [11] FNAL Collaboration, M. Okamato & al., Nucl. Phys. Proc. Suppl. 140 461 (2005).

