Experimental study of $K^+ \rightarrow \pi^0 \mu^+ \nu_\mu \gamma$ in E787

FUJIWARA, Tsunehiro Department of Physics, Kyoto University

BNL-E787 collaboration : BNL,KEK,Alberta ,Princeton,TRIUMF ,UBC , Fukui ,Kyoto, RCNP

CONTENTS:

- ★ Introduction
 - Physics motivation
 - BNL-E787 Experiment
- ★ Analysis
 - Background Estimates
 - Results

Physics Motivation

Branching ratio is predicted as ~ 2.0×10^{-5} ($E_{\gamma} > 30 MeV, \theta_{\mu\gamma} > 20^{\circ}$)

Experimental Status

First experimental search is @Argonne National Laboratory(PR D8 1307(<u>1973</u>)) $BR < 6.1 \times 10^{-5}(CL = 90\%)$

Recently two measurements are reported.

ISTRA+ $\frac{Br(K_{\mu3\gamma})}{Br(K_{\mu3})} = (0.270 \pm 0.029(stat) \pm 0.026(syst)) \times 10^{-2} (5 < E_{\gamma} < 30)$ $\frac{Br(K_{\mu3\gamma})}{Br(K_{\mu3})} = (4.48 \pm 0.68(stat) \pm 0.99(syst)) \times 10^{-4} (30 < E_{\gamma} < 60)$ (hep-ex/0506023)

KEK-E470 $Br(E_{\gamma} > 30MeV, \theta_{\mu^+\gamma} > 20^\circ) = [2.4 \pm 0.5(stat) \pm 0.6(syst)] \times 10^{-5}$ (Phys.Lett. B633 (2006))

E787 Detector & Detection Method

Trigger for $K_{\mu 3\gamma}$ ("3gamma" trigger in '98)

- ★ Inner Layer of RS \Rightarrow Low momentum(100 ~ 180*MeV*/*c*)
- ***** # of clusters in Barrel-Veto \geq 3

Data Set Property

- * BNL-E787 '98 Run (Sep-Dec) (by-product of $\pi^+ \nu \overline{\nu}$)
- * Number of K^+ = 3.53 × 10¹¹
- trigger rate
 (prescaled by 5)
 = 5 ~ 7events/spill
- Data Set Size: (~ 1TB)

Background Sources

- * $\pi^0 \mu^+ \nu_\mu$ +accidental/split γ
- * $\pi^0 e^+ v_e$ +accidental/split γ
- * $\pi^+\pi^0\pi^0$ +missing/overlapping γ
- $\star \pi^+ \pi^0 \gamma$

or

- classfication by # of γ s
- * $4\gamma + 1\gamma$ is missed and/or charged track miss-ID
- * 3γ + charged track miss-ID
- * 2γ + fake γ and/or charged track miss-ID

Background supression

- ★ Charged track PID cuts
 - Muon band $\operatorname{cut}(\pi^+, e)$
 - dE/dx cut in RS(e)
- * γ related cuts
 - Overlapping photon $cut(K_{\pi 3})$
 - Split γ cluster cut($K_{\mu3}$)
- ★ $K_{\mu3}$ likelihood cut ($K_{\mu3}$)
 - $\chi^2_{K\mu3}$ probability cut
- ***** $K_{\mu 3\gamma}$ consistency cuts
 - Missing energy cut $(K_{\pi 2\gamma}) \leftarrow K_{\mu 3\gamma}$ kinematic fitting
 - $\chi^2_{K\mu3\gamma}$ probability cut

Background Estimates

Sources	#events	Estimate Method
$K_{\pi 3}$	3.3±0.56	Data
$K_{\mu3} + Acc$	6.7±2.1	Data
$K_{e3}/K_{e3\gamma}$	0.2±0.1	Data
$K_{\pi 2 \gamma}$	0.27±0.07	M.C.
$K_{\mu3}$ + split γ	< 0.35(90%CL)	M.C.
All Backgrounds	10.4±2.2	-

Background levels are well controled . " $K_{\mu3}$ + splitted γ " background is negligible.

Monte Carlo Signal Distributions

Signal Candidates

JPS2006+DPF2006 Joint meeting @ Honolulu - p.10

Signal Candidates

Singel Event Sensitivity

- * Number of $K^+ = 3.5338 \times 10^{11}$
- * Acceptance(trigger*offline) = $(5.25 \pm 0.06) \times 10^{-6}$
 - trigger = 8.64×10^{-4}
 - offline = 5.67×10^{-3}
 - fiducial cut = 0.738
 - charged track cut = 0.853
 - photon cut = 0.254
 - kinematics cut = 0.165
 - physics cut = 0.346
 - taget & beam cut = 0.684
- * K^+ stop efficiency F_s normalized to $K_{\pi 2\gamma} = 0.441 \pm 0.001$
- → Single Event Sensitivity = $(\#K^+ \times Acceptance \times F_s)^{-1}$ = $(1.22 \pm 0.01) \times 10^{-6}$

Results: Branching Ratio

- * Number of events in signal box = 35
- ***** Backgrounds = 10.4 ± 2.2
- ***** Estimated Systematic Uncertainties = ± 5.9 %

 $\rightarrow BR(K_{\mu 3\gamma}) = (3.00 \pm 0.77(stat) \pm 0.18(syst)) \times 10^{-5}$

Consistent with SM prediction (= 2.0×10^{-5})