The decay constants f_B and f_{D^+} from three-flavor lattice \mbox{QCD}

Flavor Physics from Lattice QCD

James N. Simone[†] Fermilab Lattice Collaboration

DPF/JPS 2006, Honolulu, HI - Oct 2006 [†]simone@fnal.gov

Unitarity Triangle

Over constrain $(\bar{\rho}, \bar{\eta})$

QCD form factors have been a leading source of uncertainty in many important cases.

Precision Lattice QCD is required

— $\mathbf{N}_{\mathbf{f}} = \mathbf{2} + \mathbf{1}$ dynamical quarks

Neglecting vaccuum polarization ($n_f = 0$, quenched QCD) leads to 10-20% uncertainties

The MILC collaboration has made publicly available sets of gluon configurations having three flavors dynamical quarks (google: gauge connection)

- quenching no longer dominant systematic!
- one flavor $m_h pprox m_s$, two flavors $m_s/10 \leq m_l \leq m_s$
- numerically less expensive than other methods
- lighter quarks reduce "chiral" extrapolation systematics
- improved! gluon $\mathcal{O}\left(lpha_{s}^{2}a^{2}
 ight)$, quarks $\mathcal{O}\left(lpha_{s}a^{2}
 ight)$

— testing three flavor QCD — Do "gold plated" quantities match experiment?

Gold plated in lattice QCD:

- stable particles not near threshold
- decays having at most on stable initial and final state meson

check lights, baryons, heavy-lights and -onia...

Davies *et al.*, Phys. Rev. Lett. **92**, 022001 (2004) Next slide from A. Kronfeld LAT2003

4-1

$B_{\boldsymbol{c}}$ mass prediction

"In an unprecedented feat of computation, particle theorists made the most precise prediction yet of the mass of the 'charm-bottom' particle. Days later, experimentalists dramatically confirmed that prediction." I. Shipsey, Nature **436** (2005)

AIP Physics News Update: *Most Precise Mass Calculation For Lattice QCD* among **The Top Physics Stories for 2005**

A Precision test of HQ effective theories on the lattice. Discretization effects for HQ's are under control.

I. Allison, et al., Phys. Rev. Lett. 94 (2005)

"Gold" Modes for CKM Matrix

leptonic and semileptonic decays plus mixing

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ \pi \to \ell \bar{\nu} & K \to \ell \bar{\nu} & B \to \pi \ell \bar{\nu} \\ K \to \pi \ell \bar{\nu} & B \to \ell \bar{\nu} \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ D \to \ell \bar{\nu} & D_s \to \ell \bar{\nu} & B \to D^* \ell \bar{\nu} \\ D \to \pi \ell \bar{\nu} & D \to K \ell \bar{\nu} & B \to D \ell \bar{\nu} \\ |V_{td}| & |V_{ts}| & |V_{tb}| \approx 1 \\ B - \bar{B} \text{ mixing: } B_s - \bar{B}_s \text{ mixing: } \\ \hat{B}_{B_d} \text{ and } f_B & \hat{B}_{B_s} \text{ and } f_{B_s} \end{pmatrix}$$

 $K-\bar{K}$ mixing: $|\epsilon_K| \sim B_K \bar{\eta}(1-\bar{\rho})$

– Decay constant $\mathbf{f}_{\mathbf{D}^+}$ predicted –

"It became clear that both groups [CLEO-c and Fermilab Lattice + MILC Collaborations] could have substantial results just in time for the Lepton-Photon Symposium in Uppsala at the end of June. Since both communities felt that it was very important for the LQCD result to be a real prediction, they agreed to embargo both of their results until the conference... The two results agree well within the errors of about 8% for each." D. Cassel, CERN Courier **45**, 6 (2005)

D decays constants are an important test of the lattice techniques needed for $f_B. \label{eq:basic}$

Simulated masses down to $m_q = m_s/10 + \chi PT$.

Aubin et al., Phys. Rev. Lett. 95 (2005) 122002

NLO Staggered χ **PT**

Squared pseudoscalar meson masses are split

$$M_{ab,\xi}^2 = (m_a + m_b)\mu + a^2 \Delta_{\xi}$$

The (sixteen) mesons are labeled by their taste representation $\xi = P, A, T, V, I$. $\Delta_P = 0$.

NLO
$$\chi {\rm PT}$$
 for $\phi_{H_q} \equiv f_{H_q} \sqrt{m_{H_q}}$:

$$\phi_{H_q} = \Phi_H \left[1 + \Delta f_H(m_q, m_l, m_h) + p_H(m_q, m_l, m_h) \right]$$

At finite a, taste breaking effects arise in the logarithmic terms Δf_H and the analytic terms p_H . Effects parameterized by $a^2 \Delta_{\xi}$ and additional LECs $a^2 \delta'_V$ and $a^2 \delta'_A$.

Aubin et al., Phys. Rev. D. 70 (2004) 094505

- finite a (taste) effects dilute logarithmic behavior
- $\bullet~$ QCD "chiral log" recovered when $a \rightarrow 0$
- in continuum limit, same LECs as QCD
- f_{D^+} and $f_{D_{\mathbf{s}}}$ in limits $m_{\mathbf{q}}, m_{l}, m_{\mathbf{h}} \rightarrow$ physical masses

Simulations

Decay constants are computed for many combinations of (m_q, m_l) . The "partially quenched" values correspond to $m_q \neq m_l$.

At each lattice spacing, entire set of results are fit using NLO S χ PT.

- D meson χ extrapolations

• $a = 0.09 \,\text{fm}$ (red) and $a = 0.12 \,\text{fm}$ (blue)

- only subset of fitted pts along $m_q = m_l$ visible
- square symbols correspond to f_{D^+} and f_{D_s}

D meson decay constants

$\mathbf{f}_{\mathbf{D}^+}$ is an important check of Staggered χ -PTh.

$$f_{D^+} = 201 \pm 3 \pm 17 \text{ MeV}$$

 $f_{D_s} = 249 \pm 3 \pm 16 \text{ MeV}$
 $f_{D_s}/f_{D^+} = 1.24 \pm 0.01 \pm 0.07$ hep-lat/0506030

bulk of common uncertainties cancel in ratio

DPF/JPS 06 Oct 31, 2006

HPQCD f_{B^+} and $f_{B_{\rm s}}$

HPQCD uses the same MILC lattices

NRQCD used to simulate the bottom quark. FPCP'06: Belle f_{B^+}

Gray, et al., Phys. Rev. Lett. 95 (2005) 2001

$$\frac{f_{B_s}}{f_{B^+}} = 1.20 \pm 0.03 \pm 0.01$$

Ratio input for $\Delta M_{B_s}/\Delta M_{B_d}$ constraint

CKM constraints and f_{B^+}

Below: constraints from ΔM_d and Belle $B \to \tau \nu$

Left: with HPQCD f_B and JLQCD \hat{B}_{B_d} $(N_f = 2)$

DPF/JPS 06 Oct 31, 2006

Fermilab-MILC B meson results

Preliminary result only at lattice spacing a = 0.09 fm. Calculations underway at a = 0.12 and 0.15 fm.

$f_{B_s}/f_{B^+} = 1.27 \pm 0.02 \pm 0.06$

DPF/JPS 06 Oct 31, 2006

Decay constant ratios

Preliminary ratios of decay constants at a lattice spacing a = 0.09 fm.

$$f_{D_s}/f_{D^+} = 1.21 \pm 0.01 \pm 0.04$$

$$f_{B_s}/f_{D_s} = 0.99 \pm 0.02 \pm 0.06$$

$$f_{B^+}/f_{D^+} = 0.95 \pm 0.03 \pm 0.06$$

$$R = (f_{B_s}/f_{B^+})/(f_{D_s}/f_{D^+}) = 1.04 \pm 0.01 \pm 0.02$$

R-1 is a measure of both SU(3) and HQ flavor symm. breaking. Result above indicates contributions from analytic terms are larger than just the χ -log contributions, which were estimated to be R-1=-3.3%, [B. Grinstein, hep-ph/9308226].

More CKM physics

Lattice QCD is capable of providing form factors needed in CKM studies.

Reported at LATTICE 2006 to appear in Pos LAT06 (2006)

- $B \to D^* \ell \nu$: eliminate quenching error and reduce χ -extrap. uncertainty in $h_{A_1}(1)$
- $B \to \pi \ell \nu$: HQS and unitarity constraints applied to lattice results
- HQET matrix elements $\overline{\Lambda}$ and λ_1 : appear in HQET expansion for inclusive B decay rates.
- $B-\bar{B}$ matrix elements from MILC lattices
- B_K : Mixed staggered (sea) domain wall (valence) action simplifies χ -P.Th