Stau-Neutralino Coannihilation and Collider

Courtesy: NASA

R. Arnowitt,¹⁾ A. Aurisano,¹⁾ <u>B. Dutta</u>,¹⁾ A. Gurrola,¹⁾ T. Kamon,¹⁾ N. Kolev,²⁾ A. Krislock,¹⁾ P. Simeon,¹⁾ D. Toback,¹⁾ P. Wagner¹⁾ 1) Department of Physics, Texas A&M University 2) Department of Physics, Regina University, Canada DPF 2006, Hawaii

➢ Cosmology, SUSY, WIMP

Stau neutralino coannihilation in minimal supergravity (mSUGRA) model

Prospects of detection at the LHC and determination of masses

 \succ Determination of $\Omega_{\tilde{\chi}_1^0} h^2$

Conclusion

Phys. Lett. B618, 182 (2005); B639, 46 (2006); hep-ph/0608193

10/31/06

CDM = Neutralino ; NLSP = stau

10/31/06

Minimal Supergravity (mSUGRA)

4	paramet	ers +	1 sign
---	---------	-------	--------

- $m_{1/2}$ Common gaugino mass at $M_{\rm G}$
- m_0 Common scalar mass at M_G
- A_0 Trilinear coupling at M_G
- $\tan\beta$ $<H_u>/<H_d>$ at the electroweak scale

sign(μ) Sign of Higgs mixing parameter ($W^{(2)} = \mu H_u H_d$)

Experimental Constraints

- i. $M_{\text{Higgs}} > 114 \text{ GeV}$ $M_{\text{chargino}} > 104 \text{ GeV}$
- ii. $2.2 \times 10^{-4} < Br \ (b \to s \ \gamma) < 4.5 \times 10^{-4}$
- iii. $0.094 < \Omega_{\tilde{\gamma}_1^0} h^2 < 0.129$
- iv. $(g-2)_{\mu}$

10/31/06

Stau Neutralino Coannihilation and GUT Scale

In mSUGRA model the lightest stau seems to be naturally close to the lightest neutralino mass especially for large $tan\beta$

For example, the lightest selectron mass is related to the lightest neutralino mass in terms of GUT scale parameters:

$$m_{\tilde{E}c}^{2} = m_{0}^{2} + 0.15m_{1/2}^{2} + (37 \text{ GeV})^{2} \qquad m_{\tilde{\chi}_{1}^{0}}^{2} = 0.16m_{1/2}^{2}$$

Thus for $m_{0} = 0$, $m_{\tilde{E}^{2}}^{2}$ becomes degenerate with $m_{\tilde{\chi}_{1}^{0}}^{2}$ at $m_{1/2} = 370$
GeV, i.e. the coannihilation region begins at

 $m_{1/2} = (370-400) \text{ GeV}$

For larger $m_{1/2}$ the degeneracy is maintained by increasing m_0 and we get a corridor in the $m_0 - m_{1/2}$ plane.

The coannihilation channel occurs in most SUGRA models with non-universal soft breaking,

10/31/06

Cosmologically Allowed Region

Can we measure ΔM at colliders?

10/31/06

SUSY Signature at the LHC

10/31/06

$M_{\tau\tau}^{vis}$ in ISAJET

Stau-Neutralino Coannihilation at the Collider

E_{T}^{miss} + 1j + 3 τ Analysis : $M_{\tau\tau}$

Much smaller SM background, but a lower acceptance

[1] ISAJET + PGS sample of E_T^{miss} , 1 jet and at least 3 taus with $E_T^{\text{vis}} > 40$,

40, 20 GeV and $\mathcal{E}_{\tau} = 50\%$, fake $(f_{j \rightarrow \tau}) = 1\%$. Final cuts : $E_{T}^{\text{jet1}} > 100 \text{ GeV}, E_{T}^{\text{miss}} > 100 \text{ GeV}, E_{T}^{\text{jet1}} + E_{T}^{\text{miss}} > 400 \text{ GeV}$

[2] Select OS low di-tau mass pairs, subtract off LS pairs

9

E_{T}^{miss} + 1j + 3 τ Analysis

Note: $f_{i \rightarrow \tau} = 0\% \rightarrow 1.6$ counts/fb⁻¹ for $\Delta M = 10$ GeV

3τ Analysis: Combined Results

- Use N_{OS-LS} and $M_{\tau\tau}$ to independently measure ΔM
- Both produce high quality measurements
- We assume a gluino mass
- Dominant uncertainty
 - 5% uncertainty on M_{gluino}

Combined results:

 $\Delta M = 10 \pm 1.3 \text{ GeV} (30 \text{ fb}^{-1})$

3τ Analysis (cont'd)

 $\blacktriangleright \text{Next: combine } N_{\text{OS-LS}} \text{ and } M_{\tau\tau} \text{ values to measure} \\ \Delta M \text{ and } M_{\text{gluino}} \frac{\text{simultaneously}}{\Gamma}$

10/31/06

Determination of m_0 and $m_{1/2}$

We determine $\delta m_0/m_0 \sim 5\%$ and $\delta m_{1/2}/m_{1/2} \sim 6\%$ with L=30 fb⁻¹ (for $A_0=0$, tan $\beta=40$)

10/31/06

Determination of $\Omega_{\tilde{v}^0} h^2$

10/31/06

Conclusion

- Signals in the stau-neutralino coannihilation region are studied using mSUGRA model as a bench mark scenario ($\Delta M \sim 10$ GeV)
- LHC: Two analyses with visible $E_T^{\tau} > 20$ GeV:
 - **a** 2τ analysis: Discovery with 10 fb⁻¹

Dark Matter psie

- $\delta \Delta M / \Delta M \sim 18\%$ using M_{peak} with 5% gluino mass error
- **analysis:** Combine $N_{\text{OS-LS}}$ and M_{peak} measurements
 - $\delta \Delta M / \Delta M \sim 15\%$ and $\delta M_{gluino} / M_{gluino} \sim 6\%$ with no gluino mass assumption (It may be hard to measure the gluino mass otherwise due to the low energy taus in the signal.)
- **The analyses can be done for the other models that don't suppress** χ_2^0 production.
- ✓ Comparison: $\delta\Delta M/\Delta M \sim 10\%$ (500 fb⁻¹) at the ILC if we implement a very forward calorimeter to reduce two- γ background.
- $\delta m_0/m_0 \sim 4\%$, $\delta \Omega h^2/\Omega h^2 \sim 20\%$ for $A_0=0$, $\tan\beta=40$ with L=30 fb⁻¹

Backups

3τ Analysis: Accuracy in $\Delta M \& M_{gluino}$

