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1. Introduction

The magnetic field due to a point magnetic monopole of strength g situated at the
origin is given by

Bg = g
r

r3
, g : magnetic charge .

One of the vector potentials that yield Bg, with the relation Bg = ∇×A , is found
to be

Ag =
g(1− cos θ)

r sin θ
eφ ,





θ : zenith angle, 0 ≤ θ ≤ π
φ : azimuthal angle, 0 ≤ φ < 2π
eφ : unite vector in the φ-direction

This potential has singularities:

• r = 0 : monopole singularity

• θ = π : Dirac string singularity

Existence of the singularities guarantees

∇ ·Bg = ∇ · (∇×Ag)(6= 0) = 4πgδ3(r) .



Now, we consider quantum mechanics for a particle of electric charge e in the
monopole background. Then we find the Dirac quantization condition (Dirac,1931),

eg =
n

2
, n = 0, ±1, ±2, . . . (in natural unites c = ~ = 1) .

Dirac found this condition in the following way: The Schrödinger equation and its
solution are given by

− 1
2m

(∇− ieAg

)2
ψ = Eψ ⇒ ψ = ψ0 exp

[
ie

∫

C

dr ·Ag

]
,

ψ0 : wave function
of a free particle

The phase of the wave function can change modulo 2π under a single turn of the wave
function around the Dirac string,

e

∮

C

dr ·Ag = 2πn .

By taking C to be an extremely small loop and
using Stokes’ theorem, the integral in the LHS
reduces to the total magnetic flux due to g ;
thus, e× 4πg = 2πn.



Without treating the Dirac string, Wu and Yang derived eg = n/2 using two gauge
potentials (Wu and Yang,1975).

Consider two potentials that give the magnetic field Bg,

AN =
g(1− cos θ)

r sin θ
eφ for θ < π − ε : UN

AS =
g(−1− cos θ)

r sin θ
eφ for θ > ε : US .

The potential AN is regular on the region UN, while AS is
regular on US. No string singularities in this system.

In the overlap region UN ∩ US, the following gauge transformation is valid:

ψN = exp
[
ie

∫

C

dr ·(AN −AS)
]
ψS = exp

[
ie

∫

C

dr ·∇(2gφ)
]
ψS = e2iegφψS ,

where ψN and ψS are wave functions on UN and US, respectively. Comparing
ψN(2π) = e4πiegψS(2π) with ψN(0) = ψS(0) leads to eg = n/2 .
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In Dirac’s method and Wu-Yang’s method, eg = n/2 is derived from

consideration of the Dirac phase factor exp
[
ie

∫
dr ·A]

.



In addition to eg = n/2, the Schwinger quantization condition (Schwinger,1966) is
known,

eg = n , n = 0, ±1, ±2, · · · (in natural unites c = ~ = 1) .

Schwinger discovered this condition in study of a relativistic quantum field theory of
electric and magnetic charges (J. Schwinger, Phys. Rev. 144 (1966), 1087 ). There,
it was verified that the relativistic invariance at the operator level is maintained only
when the gauge potential involves an infinite string singularity and eg = n is satified.

A suitable potential that gives Bg is

ASchwinger =
g(− cos θ)

r sin θ
eφ .

This potential has singularities at both the north
and south poles.



In the present work,

• We derive the charge quantization conditions eg = n/2 and eg = n by utilizing
the Atiyah-Singer index theorem in two dimensions.

• We treat the Dirac potentials AN, AS and the Schwinger potential ASchwinger

in a unified manner. This can be done by taking

Aκ =
g(κ− cos θ)

r sin θ
eφ , Aκ =





AN for κ = 1
AS for κ = −1
ASchwinger for κ = 0



2. Atiyah-Singer index theorem in two dimensions (Atiyah and Singer, 1968)

Let M be a two-dimensional compact manifold. In terms of local coordinates (qα)
(α = 1, 2) on M, the Dirac operator is expressed as

iD/ ≡ iσaea
αDα (a, α = 1, 2) , Dα ≡ ∂

∂qα
+

i

2
ωασ3 − ieAα .

Here σ1, σ2, σ3 are the Pauli matrices, ea
α is an inverse zweibein on M, ωα is a spin

connection in two dimensions, Aα is a Yang-Mills field, and e is a coupling constant.

Consider the positive chirality zero-modes ϕ+
ν+

(ν+ = 1, . . . , n+) and the negative
chirality zero-modes ϕ−ν− (ν− = 1, . . . , n−) of iD/ , characterized by

iD/ϕ±ν± = 0 , σ3ϕ
±
ν± = ±ϕ±ν± ,

where n+ (n−) denotes the number of positive (negative) chirality zero-modes. Then,
the Atiyah-Singer index theorem in two dimensions reads

n+ − n− =
e

4π

∫

M
d2q tr εαβFαβ

where Fαβ ≡ ∂αAβ − ∂βAα − ie[Aα, Aβ ] , and tr is the trace over the gauge group.



Now, we consider the case in which M = S2 and gauge group= U(1). Then the
Atiyah-Singer index theorem reads, in the coordinates (q1, q2) = (θ, φ),

n+ − n− =
e

4π

∫

S2
dθdφ εαβFαβ , Fαβ ≡ ∂αAβ − ∂βAα .

Also, we choose the monopole gauge potential Aκ ; in a component form, it is written
as

Aa = δa2
g(κ− cos θ)

r sin θ
in the local orthonormal frame ,

Aα = eα
aAa = δα2g(κ− cos θ) in the general coordinates .

Accordingly, it follows that Fab = εab
g

r2
and Fαβ = εαβg sin θ . The Atiyah-Singer

index theorem reduces to
®
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n+ − n− = 2eg

This seems to be a charge quantization condition. But, at this stage, we don’t know
what numbers the LHS may take: all integers or even numbers or some particular
numbers? In order to know possible numbers in the LHS, we need to solve iD/ϕ = 0.



3. Solving the massless Dirac equation

The massless Dirac equation iD/ϕ = 0 can be written in a matrix form,
(

0 ∇θ − i
sin θ∇φ

∇θ + i
sin θ∇φ 0

)(
u+(θ, φ)
u−(θ, φ)

)
= 0 , ϕ ≡

(
u+

u−

)
,

where

∇θ ≡ ∂

∂θ
+

1
2

cot θ , ∇φ ≡ ∂

∂φ
− ieg(κ− cos θ) .

Because of the periodicity in φ, u± takes the form u±(θ, φ) = v±(θ) exp(im±φ) . Here

m+ and m− are half-integers, that is, m+ , m− = ±1
2
, ±3

2
, . . . . , because the spinor

field ϕ has to change sign under a 2π rotation in φ. The differential equation in θ is
obtained as [

d

dθ
+

(
1
2
∓ eg

)
cot θ ∓ m± − egκ

sin θ

]
v±(θ) = 0 .

The solutions of this equation are readily found to be

v±m±(θ) =
(

sin
θ

2

)s±m±
(

cos
θ

2

)c±m±
.



Here the constants s±m± and c±m± are defined by

s±m± ≡ ±{m± − eg(κ− 1)} − 1
2

, c±m± ≡ ∓{m± − eg(κ + 1)} − 1
2

.

The solution v±m±(θ) diverges at neither θ = 0 nor π, if and only if s±m± , c±m± ≥ 0.

• The conditions s+
m+

, c+
m+

≥ 0 can be expressed as

1
2

+ eg(κ− 1) ≤ m+ ≤ −1
2

+ eg(κ + 1) ⇒ eg ≥ 1
2

.

• The conditions s−m− , c−m− ≥ 0 can be expressed as

1
2

+ eg(κ + 1) ≤ m− ≤ −1
2

+ eg(κ− 1) ⇒ eg ≤ −1
2

.

The conditions s+
m+

, c+
m+

≥ 0 and the conditions s−m− , c−m− ≥ 0 are never satisfied
simultaneously with a given eg. The possible solutions of iD/ϕ = 0 are restricted to

ϕ+
m+

=
(

u+
m+

0

)
for eg ≥ 1

2
, ϕ±m± = 0 for |eg| < 1

2
, ϕ−m− =

(
0

u−m−

)
for eg ≤ −1

2
,

where u±m± = v±m±(θ) exp(im±φ). The chirality condition σ3ϕ
±
m± = ±ϕ±m± is satisfied.



4. Count of zero-modes and derivation of charge quantization conditions

First, consider the case κ = 1. The inequality for m+ and that for m− read

1
2
≤ m+ ≤ −1

2
+ 2eg ,

1
2

+ 2eg ≤ m− ≤ −1
2

.

Suppose that eg
(
≥ 1

2

)
is in the interval

n

2
≤ eg <

n + 1
2

(n = 1, 2, . . .). Because

m+ takes half-integer values, the allowed values of m+ are seen to be

m+ =
1
2
,

3
2
,

5
2
, . . . ,

2n− 1
2

⇒ n+ ≡ ]
(
ϕ+

m+

)
= n , while n− = 0 .

Next suppose that eg
(
≤ −1

2

)
is in the interval −n + 1

2
< eg ≤ −n

2
(n = 1, 2, . . .).

Because m− also takes half-integer values, the allowed values of m− are seen to be

m− = −1
2
, −3

2
, −5

2
, . . . , −2n− 1

2
⇒ n− ≡ ]

(
ϕ−m−

)
= n , while n+ = 0 .

Therefore the AS index theorem n+ − n− = 2eg gives

n = 2eg for eg ≥ 1
2

, 0 = 2eg for |eg| < 1
2

, − n = 2eg for eg ≤ −1
2

.



The three relations obtained here,

n = 2eg for eg ≥ 1
2

, 0 = 2eg for |eg| < 1
2

, − n = 2eg for eg ≤ −1
2

,

are brought together in the form

eg =
n

2
, n = 0, ±1, ±2, . . . .

This is precisely the Dirac quantization condition.

In the case κ = −1, we have the Dirac quantization condition again. This is quite
natural, because the case κ = −1 is a mirror image of the case κ = 1.



Finally, consider the case κ = 0. The inequality for m+ and that for m− read

1
2
− eg ≤ m+ ≤ −1

2
+ eg ,

1
2

+ eg ≤ m− ≤ −1
2
− eg .

When eg is in the interval
1
2
≤ eg < 1, there are no allowed values of m+. When

eg (≥ 1) is in the interval n ≤ eg < n + 1 (n = 1, 2, . . .), the allowed values of m+

are found to be

m+ = ±1
2
, ±3

2
, ±5

2
, . . . , ±2n− 1

2
⇒ n+ ≡ ]

(
ϕ+

m+

)
= 2n , while n− = 0 .

When eg is in the interval −1 < eg ≤ −1
2
, there are no allowed values of m−. When

eg (≤ −1) is in the interval −(n + 1) < eg ≤ −n (n = 1, 2, . . .), the allowed values
of m− are found to be

m− = ±1
2
, ±3

2
, ±5

2
, . . . , ±2n− 1

2
⇒ n− ≡ ]

(
ϕ−m−

)
= 2n , while n+ = 0 .

Therefore, in this case, the AS index theorem n+ − n− = 2eg gives

2n = 2eg for eg ≥ 1 , 0 = 2eg for |eg| < 1 , − 2n = 2eg for eg ≤ −1 .



The three relations obtained here,

2n = 2eg for eg ≥ 1 , 0 = 2eg for |eg| < 1 , − 2n = 2eg for eg ≤ −1 ,

are brought together in the form

eg = n , n = 0, ±1, ±2, . . . .

This is precisely the Schwinger quantization condition.



5. Atiyah-Singer Index theorem in the Yang-Mills-Higgs system

Let Aα be a Yang-Mills field on the two-dimensional manifold M and let Φ be an
adjoint scalar field on M. The gauge group is now assumed to be SU(2). The fields
Aα and Φ are thus expanded as

Aα = Ai
ατi + A3

ατ3 (i = 1, 2) , Φ = φiτi + φ3τ3 ,

where τ1, τ2, τ3 are the Pauli matrices. We now impose the normalization condition
tr(Φ2) = 2, or equivalently (φ1)2 + (φ2)2 + (φ3)2 = 1. Then, Φ can be diagonalized as

v†Φv = τ3 ⇒ Φ = vτ3v
†,

with a 2× 2 unitary matrix v (∈ SU(2)). Using Aα, Φ and Ψ i ≡ vτiv
†, we define the

vector field

A⊥α ≡ Aα − 1
2e

εij3tr(Ψ iDαΦ)Ψ j ,

where DαΦ ≡ ∂αΦ− i
e

2
[Aα, Φ ]. Furthermore we define the Dirac operator

iD/⊥ ≡ iσaea
αD⊥

α , D⊥
α ≡ ∂

∂qα
+

i

2
ωασ3 − i

e

2
A⊥α .



Consider the chirality zero-modes ϕt,s
νt,s

( t, s = +,− ; νt,s = 1, . . . , nt,s) of iD/⊥,
characterized by

iD/⊥ϕt,s
νt,s

= 0 , (Φ⊗ σ3)ϕt,s
νt,s

= ts ϕt,s
νt,s

.

{
t : eigenvalue of Φ
s : eigenvalue of σ3

Here nt,s denotes the number of chirality zero-modes specified by (t, s).

We can prove the AS index theorem in the 2-dimensional YMH system, i.e.

n++ − n+− − n−+ + n−− =
e

4π

∫

M
d2qεαβFαβ ,

with

Fαβ ≡ 1
2

tr
[
ΦFαβ +

i

2e
Φ

(
DαΦDβΦ−DβΦDαΦ

)]
,

where Fαβ ≡ ∂αAβ − ∂βAα − i
e

2
[Aα, Aβ ] , and tr is the trace over the gauge group.

Note here that Fαβ is precisely the ’t Hooft tensor in two-dimensions. 　



In the case of M = S2, the magnetic charge in the YMH system is defined by

g ≡ 1
8π

∫

S2
d2q εαβFαβ =

1
4π

∫

S2
F .

With this g, the AS index theorem in the YMH system can be expressed as
®
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n++ − n+− − n−+ + n−− = 2eg

In the case of M = S2, there is some evidence that n++ = n−− and n+− = n−+ . If
it is justified, the AS index theorem takes the form

n++ − n+− = eg .

According to an analysis made by Arafune, Freund and Goebel in 1974, which
is based on the homotopy theory, the charge quantization in the YMH system is
determined to be

eg = n , n = 0, ±1, ±2, . . . .

The AS index theorem discussed here is compatible with this charge quantization.



6. Summary

• We have derived both the charge quantization conditions eg = n/2 and eg = n

by using the Atiyah-Singer index theorem in two dimensions.

• The difference between the Dirac and Schwinger quantization conditions simply
results from the fact that

](zero-modes in the case κ = 0, Schwinger formalism)

= 2× ](zero-modes in the case κ = ±1, Dirac formalism)

• Our approach requires neither the classical notion of paths around a string
singularity nor the concept of patches and sections.

• The charge quantization conditions are regarded as the necessary and sufficient
conditions that zero-modes of the Dirac operator exist and the Atiyah-Singer
index-theorem in two dimensions is valid.

• We have generalized the Atiyah-Singer index theorem in two dimensions into
the Yang-Mills-Higgs system. This theorem appears to be consistent with the
charge quantization condition eg = n found by Arafune, Freund and Goebel.


