Vector-Vector(Tensor) B Decays at B_AB_{AR}

Andrei Gritsan

Johns Hopkins University

November 1, 2006

Honolulu, Hawaii JPS and APS Division of Particles and Fields

${\boldsymbol{B}}$ Decays to Two Mesons with Spin

• Three configurations of spin projections in $B \rightarrow VV$:

Penguin B ightarrow VV Decays

• Interest in "penguin" dominated modes: $B \rightarrow \phi, \omega, \rho + K^*$

• New Physics in loop amplitude: 12 measurements (!)

Compare: $B \to \pi, \eta', \phi, \rho, ... + K^{\pm}$ 2 observables: $|A_0|, |\bar{A}_0| \leftarrow \mathcal{A}_{CP}$ $B \to \eta', \phi, \pi^0, \omega, ... + K^0$ 3 obs.: $|A_0|, |\bar{A}_0|, \arg(A_0/\bar{A}_0) \leftarrow \sin 2\beta_{\text{eff}}$

Spin Flip Suppression and Polarization Puzzle

• Standard Model (V - A): left-handed quarks (!)

 $\bar{q}W^+ \to \bar{s} \Rightarrow \lambda_{\bar{s}} = +\frac{1}{2} \qquad g \to s\bar{s} \Rightarrow \lambda_s = \pm \frac{1}{2}, \ \lambda_{\bar{s}} = \pm \frac{1}{2}$

(A.Ali; M.Suzuki; A.Kagan,..)

- Originally pointed for "tree" $B \rightarrow VV$ decays, but:
 - extends to "penguins" (above)

- we can apply to $J_2 > J_1 = 1$ (not discussed before)

• $\phi K^{*+} \& \phi K^{*0}$: $A_0 \sim 50\%$

BABAR at Frontier Science Conf. (Oct.2002) BABAR, hep-ex/0303020, PRL **91**, 171802 (2003) Belle, hep-ex/0307014, PRL **91**, 201801 (2003)

Angular Measurements

Andrei Gritsan, JHU

Kinematic Observables in Analysis

• Fully reconstruct $B \rightarrow \phi(K^+K^-)K^*(K\pi)$ $B \rightarrow \rho(\pi^{\pm}\pi^{0\mp}) K^*(K\pi)$ $B \rightarrow \omega(\pi^+\pi^-\pi^0)K^*(K\pi)$ \mathcal{F} isher $m_1(\phi) = m_{K\pi}(K^*)$ ΔE $m_{\rm ES}$ EVENTS 6000 600 EVENTS EVENTS INENTS 4000 4000 5000 2000 2000 2000 200 1.04 0.85 m_{ES} (GeV/c²) ΔE (GeV) Fisher m_{KK} (GeV/c²) $m_{K\pi}$ (GeV/c²) Signal VENT EVEN EVEN 0.8 0.85 Background Background ΔE (GeV) Fisher m_{KK} (GeV/c²) $m_{K\pi}$ (GeV/c²)

• Discrete observables e.g. $Q_B = +/-: B$ flavor (charge)

Andrei Gritsan, JHU

Statistical Methods

• Estimate parameters with N events:

$$\vec{x}_{j} = \{m_{\text{ES}}, \Delta E, \mathcal{F}, m_{1}, m_{K\pi}, \theta_{1}, \theta_{2}, \Phi, Q_{B}\}$$

likelihood $\mathcal{L} = \exp\left(-\sum_{i,k} n_{ik}\right) \prod_{j=1}^{N} \left(\sum_{i,k} n_{ik} \mathcal{P}_{ik}(\vec{x}_{j}; \vec{\xi})\right) = \text{maximum}$

$$\mathcal{P}_{i,k}(\vec{x}_j) = \mathcal{P}_{i1}(m_{\text{ES}}) \cdot \mathcal{P}_{i2}(\Delta E) \cdot \mathcal{P}_{i3}(\mathcal{F}) \cdot \mathcal{P}_{i4}(m_1) \cdot \delta_{kQ} \times$$

 $\times \mathcal{P}_{i,k}^{\text{hel}}(m_{K\pi}, \theta_1, \theta_2, \{\Phi\}, f_L{}^k, \{f_{\perp}{}^k, \phi_{\perp}{}^k, \phi_{\parallel}{}^k, \delta_0{}^k\}) \times \mathcal{G}(\theta_1, \theta_2, \Phi)$ acceptance

• Measure: polarization $f_L = \frac{|A_0|^2}{\Sigma |A_\lambda|^2}$ $f_\perp = \frac{|A_\perp|^2}{\Sigma |A_\lambda|^2}$ phases $\phi_{\parallel} = \arg(\frac{A_{\parallel}}{A_0})$ $\phi_\perp = \arg(\frac{A_\perp}{A_0})$ $\delta_0 \propto \arg(\frac{A_{\text{LASS}}}{A_0})$ *CP* asymmetries

$B \rightarrow VV$ "Penguin" Decays

	" <mark>Per</mark>	iguin"		$\alpha_P \cdot P' + \alpha_T \cdot \dots + \alpha_T$	$T' + \alpha_C \cdot C'$ $\downarrow^{u} \bar{b} \downarrow^{W^+} \downarrow^{\bar{s}}$ $\bar{u} \bar{u} \downarrow^{\bar{s}} \downarrow^{W^+} \downarrow^{\bar{s}}$	\bar{u} "Tr u \bar{s}	ee"
R A R AR			u,d	u, d u, d		u,d	
	α_P	$lpha_T$	α_C	\mathcal{B} ranching fraction (10^{-6})	$f_L = A_0 ^2 / \Sigma A_\lambda ^2$	$\frac{N_{B\bar{B}}}{(10^6)}$	Ref. (<mark>BABAR</mark>)
ϕK^{*0}	$\sqrt{2}$	0	0	$9.2 \pm 0.7 \pm 0.6$	${\color{red} 0.506 \pm 0.040 \pm 0.015}$	384	hep- $ex/0610073$
ϕK^{*+}	$\sqrt{2}$	0	0	$12.7 \ ^{+2.2}_{-2.0} \pm 1.1$	$0.46 \pm 0.12 \pm 0.03$	89	PRL 91, 171802
$ ho^- K^{*0}$	$\sqrt{2}$	0	0	$9.6 \pm 1.7 \pm 1.5$	$0.52 \pm 0.10 \pm 0.04$	232	hep-ex/0607057
$\rho^- K^{*+}$	$-\sqrt{2}$	$-\sqrt{2}$	0	$< 12.0 \ (5.4^{+3.8}_{-3.4} \pm 1.6)$	$n/a (-0.18^{+0.52}_{-1.74})$	232	hep-ex/0607057
$ ho^0 K^{*0}$	1	0	-1	$5.6 \pm 0.9 \pm 1.3$	$0.57 \pm 0.09 \pm 0.08$	232	hep-ex/0607057
$ ho^0 K^{*+}$	-1	-1	-1	$< 6.1 \ (3.6^{+1.7}_{-1.6} \pm 0.8)$	$n/a \ (0.9 \pm 0.2)$	232	hep-ex/0607057
ωK^{*0}	1	0	1	$< 4.2 \ (2.4 \pm 1.1 \pm 0.7)$	$n/a \; (0.71^{+0.27}_{-0.24})$	232	PRD 74, 051102
ωK^{*+}	1	1	1	$< 3.4 \ (0.6^{+1.4+1.1}_{-1.2-0.9})$	n/a	232	PRD 74, 051102

Challenges in $B \to \rho K^{*0}$

- Non-resonant and other resonances:
 - $B \to (\pi\pi)_{\mathrm{S-wave}} K^{*0}$ $B \to f_0(980) K^{*0}$ $B \to f_0(1270) K^{*0}$
 - $B \to f_0(1370) K^{*0}$
 - $B \to \rho(K\pi)_{\mathrm{S-wave}}$
 - $B\to\pi\pi K\pi$

plots with sPlots technique

Challenges in $B \to \rho^0 K^{*+}$

- $B \rightarrow \rho^0 K_{K^+\pi^0}^{*+}$ $B \to \rho^0 K_{K^0 \pi^+}^{*+}$ vents / (0.002 GeV/c² Events / (0.002 GeV/c² m_{FS} (GeV/c²) m_{FS} (GeV/c²) Events / (0.02 GeV/c² Events / (0.02 GeV/c² m_{ππ} (GeV/c²) m_{ππ} (GeV/c²) Events / (0.02 GeV/c²) Events / (0.02 GeV/c² 18 16 14 12 10 0.85 0.9 m_k (GeV/c²) m_k (GeV/c²)
- Non-resonant and other resonances:
 - $B \rightarrow f_0(980) K^{*+}$ (observed)
 - $B \to f_0(1370)K^{*+}$
 - $B \to (\pi \pi)_{\mathrm{S-wave}} K^{*+}$
 - $B \to \rho(K\pi)_{\mathrm{S-wave}}$
- Previous (PRL 91, 171802) > 4σ was model-dependent (included $\rho K\pi$ and $\pi\pi K^{*+}$)

Clean Environment: $B^0 \rightarrow \phi(K\pi)^0$

Mode	$m_{K\!\pi}$	$n_{ m sig}$ (events)	${\cal B}~(10^{-6})$	\mathcal{A}_{CP}
$\phi K^{*}(892)^{0}$	BW	$406 \pm 29 \pm 15$	$9.2\pm0.7\pm0.6$	$-0.03 \pm 0.07 \pm 0.03$
$\phi K_2^* (1430)^0$	BW	$133 \pm 19 \pm 7$	$7.8\pm1.1\pm0.6$	$-0.12 \pm 0.14 \pm 0.04$
$\phi(K\pi)_0^{*0}$	LASS	$147\pm23\pm7$	$5.0\pm0.8\pm0.3$	$+0.17 \pm 0.15 \pm 0.03$

• Significant $(K\pi)_0^{*0}$: $J^P = 0^+ K\pi$ component

- inludes $K_0^*(1430)^0$ and non-resonant
- interference \Rightarrow resolve $(2\pi \phi_{\parallel}, \pi \phi_{\perp})$ ambiguity (like $B^0 \rightarrow J/\psi(K\pi)^{*0}_0)$)

$$A_{VV} = \sqrt{\frac{9}{8\pi}} [A_0 \cos\theta_1 \cos\theta_2 + \frac{1}{2} \sin\theta_1 \sin\theta_2 (A_{+1}e^{i\Phi} + A_{-1}e^{-i\Phi})] A_{\rm BW}(m_{K\pi})$$
$$A_{VS} = \sqrt{\frac{3}{8\pi}} A \cos\theta_2 A_{\rm LASS}(m_{K\pi}) \times e^{i\delta_0}$$

• Approach validated in $B^0 \to J/\psi(K\pi)^{*0}_0$

$$\delta_0 \sim \pi \Leftrightarrow e^{i\delta_0} = -1$$

Resolve Phase Ambiguity in $B^0 \rightarrow \phi K^*(892)^0$

- Strong phases: $\phi_{||} = \arg(A_{||}/A_0) = 2.31 \pm 0.14 \pm 0.08 \neq \pi, 0$ $\phi_{\perp} = \arg(A_{\perp}/A_0) = 2.24 \pm 0.15 \pm 0.09 \neq \pi, 0$ without interf.: $\{\phi_{||}, \phi_{\perp}\} \leftrightarrow \{2\pi - \phi_{||}, \pi - \phi_{\perp}\}$ preserve $\sin(\phi_{\perp} - \phi_{||}), \cos(\phi_{||}), \sin(\phi_{\perp})$
- With interference new terms: $\cos(\phi_{\perp} + \delta(m_{K\pi}) - \delta_{0})$ $\sin(\phi_{\perp} + \delta(m_{K\pi}) - \delta_{0}), \dots$ $\Rightarrow \text{ reject wrong solution}$ $\delta_{0} = 2.78 \pm 0.17 \pm 0.09 \sim \pi$ illustration plots with stat. only and small *CP*-v. $|\Delta \phi_{\parallel,\perp}| < 0.5$

Angular Projections in $B^0 \rightarrow \phi K^*(892)^0$ (1) $\mathcal{H}_{1,2} = \cos \theta_{1,2}$ $(|A_{\perp}|^2 + |A_{\parallel}|^2) (1 - \cos^2 \theta_i) \Rightarrow \text{large}$ $f_L = 0.506 \pm 0.040 \pm 0.015$

(2) Φ , small terms:

$$(|A_{\parallel}|^2 - |A_{\perp}|^2) \cos 2\Phi \& \operatorname{Im}(A_{\perp}A_{\parallel}^*) \sin 2\Phi$$

 $f_{\perp} = 0.227 \pm 0.038 \pm 0.013 \sim (1 - f_L)/2$

(3)
$$\Phi (\cos \theta_1 \cos \theta_2 > 0) - \Phi (\cos \theta_1 \cos \theta_2 < 0)$$

 $\operatorname{Re}(A_{\parallel}A_0^*) \cos \Phi \& \operatorname{Im}(A_{\perp}A_0^*) \sin \Phi \Rightarrow \text{large}$
 $\phi_{\parallel} \simeq \phi_{\perp} \neq \pi \text{ or } 0 \Rightarrow \text{FSI}$

H₁

Polarization and CP Results in $B^0 \rightarrow \phi K^*(892)^0$

f_L	$0.506 \pm 0.040 \pm 0.015$	
f_\perp	$0.227 \pm 0.038 \pm 0.013$	
ϕ_{\parallel} (rad)	$2.31 \pm 0.14 \pm 0.08$	
ϕ_{\perp} (rad)	$2.24 \pm 0.15 \pm 0.09$	
δ_0 (rad)	$2.78 \pm 0.17 \pm 0.09$	
\mathcal{A}_{CP}	$-0.03 \pm 0.07 \pm 0.03$	
\mathcal{A}_{CP}^{0}	$-0.03 \pm 0.08 \pm 0.02$	
\mathcal{A}_{CP}^{\perp}	$-0.03 \pm 0.16 \pm 0.05$	
$\Delta \phi_{ }$	$+0.24 \pm 0.14 \pm 0.08$	
$\Delta \phi_{\perp}$	$+0.19 \pm 0.15 \pm 0.08$	
$\Delta\delta_0$	$+0.21 \pm 0.17 \pm 0.08$	

 f_L and f_{\perp} confirmed and improved (puzzle) ϕ_{\parallel} and ϕ_{\perp} away from $\pi > 5\sigma$ (FSI) δ_0 close to π (similar to $B \to J/\psi K^*$) CP asymmetries consistent with 0 watch for $\Delta \phi_{\perp}$ $(\beta_{\text{off}}^{\text{P-odd}} - \beta_{\text{off}}^{\text{P-even}})$ $\Delta \delta_0 = \frac{1}{2} (\delta_0^+ - \delta_0^-)$ is a new approach to CP $|A_0| \simeq |A_{+1}| \gg |A_{-1}|$ $\arg(A_0) \neq \arg(A_{+1})$ In short: $A_{\pm 1} = (A_{\parallel} \pm A_{\perp})/\sqrt{2}$ because:

Polarization and CP in $B^0 \rightarrow \phi K_2^* (1430)^0 / (K\pi)_0^{*0}$

f_L	$0.853^{+0.061}_{-0.069} \pm 0.036$			
f_{\perp}	$0.045^{+0.049}_{-0.040} \pm 0.013$			
$\phi_{ }$ (rad)	$2.90 \pm 0.39 \pm 0.06$			
ϕ_{\perp} (rad)	$5.72^{+0.55}_{-0.87} \pm 0.11$			
δ_0 (rad)	$3.54^{+0.12}_{-0.14} \pm 0.06$			
$\mathcal{A}_{CP}(\phi K_2^*)$	$-0.12 \pm 0.14 \pm 0.04$			
$\mathcal{A}_{CP}(\phi K_0^*)$	$+0.17 \pm 0.15 \pm 0.03$			

no other CP-violation terms

30 20 20 10 H Η $f_L(\phi K_2^*) \sim 1 \Rightarrow \propto \cos^2 \theta_2$ (like ϕK_0^*) $\Rightarrow \propto (3\cos^2\theta_1 - 1)^2$ ("flat" ϕK_0^*) $2\mathcal{R}e(A_1A_2^*) \Rightarrow \propto (1-3\cos^2\theta_1)$ again $\delta_0 \sim \pi$

- Weak constraints on ϕ_{\parallel} (2.9 σ) and ϕ_{\perp} (1.6 σ)
- In short $|A_0| \gg |A_{\pm}|$, why in $B \rightarrow VT$ not VV (?)

$B \rightarrow VV$ and VT "Penguin" Summary

$ \overset{\alpha_{P}}{\leftarrow} \overset{P'}{=} \overset{\alpha_{T}}{\leftarrow} \overset{P'}{=} \overset{\alpha_{T}}{\leftarrow} \overset{T'}{=} \overset{\alpha_{T}}{\leftarrow} \overset{T'}{=} \overset{\alpha_{T}}{\leftarrow} \overset{T'}{=} \overset{\alpha_{T}}{\leftarrow} \overset{C'}{=} \overset{\alpha_{T}}{\leftarrow} \overset{\alpha_{T}}{=} \overset{\alpha_{T}}{$								
	B A B AR	u	,d		u,d u,d u,d	u, d u, d		
	B decay	α_P	$lpha_T$	$lpha_C$	$\mathcal{B}(10^{-6})$	f_L	$N_{B\bar{B}}(10^6)$	
	ϕK_2^{*0}	$\sqrt{2}$	0	0	$7.8\pm1.1\pm0.6$	$\frac{0.853^{+0.061}_{-0.069}\pm0.036}{}$	384	
	ϕK^{*0}	$\sqrt{2}$	0	0	$9.2\pm0.7\pm0.6$	${\color{red} 0.506 \pm 0.040 \pm 0.015}$	384	
	ϕK^{*+}	$\sqrt{2}$	0	0	$\frac{12.7}{-2.0} \stackrel{+2.2}{\pm} 1.1$	${\color{red} 0.46 \pm 0.12 \pm 0.03}$	89	
	$\rho^- K^{*0}$	$\sqrt{2}$	0	0	$9.6 \pm 1.7 \pm 1.5$	$0.52 \pm 0.10 \pm 0.04$	232	
	$\rho^- K^{*+}$	$-\sqrt{2}$	$-\sqrt{2}$	0	$< 12.0 \ (5.4^{+3.8}_{-3.4} \pm 1.6)$	$n/a (-0.18^{+0.52}_{-1.74})$	232	
	$ ho^0 K^{*0}$	1	0	-1	$5.6 \pm 0.9 \pm 1.3$	$0.57 \pm 0.09 \pm 0.08$	232	
	$ ho^0 K^{*+}$	-1	-1	-1	$< 6.1 \ (3.6^{+1.7}_{-1.6} \pm 0.8)$	$n/a~(0.9\pm 0.2)$	232	
	ωK^{*0}	1	0	1	$< 4.2 \ (2.4 \pm 1.1 \pm 0.7)$	$n/a \ (0.71^{+0.27}_{-0.24})$	232	
	ωK^{*+}	1	1	1	$< 3.4 \ (0.6^{+1.4+1.1}_{-1.2-0.9})$	n/a	232	

Summary

- Polarization puzzle: strong or weak interaction effect (?) $|A_0| \simeq |A_+| \gg |A_-|$ in $B \to \phi K^*(892)^0$ (puzzle) $|A_0| \simeq |A_{\pm}|$ in $B \to \rho K^*(892)^0$, $\phi K^*(892)^+$ (consistent with above) $|A_0| \gg |A_{\pm}|$ in $B \to \phi K_2^*(1430)^0$ (not consistent with above)
- Effects of strong interactions:

 $\arg(A_0) \neq \arg(A_+) \text{ in } B \rightarrow \phi K^*(892)^0$ $\arg(A_0) \sim \pi \text{ in } B \rightarrow VT \text{ and } VV \text{ relative to } VS$

• *CP*-parameters include clean weak interaction observables: $\Delta \phi_{\perp}, \ \Delta \phi_{\parallel}, \ \Delta \delta_0$ equivalent to $\sin 2\beta_{\rm eff}$

also three direct-CP parameters \mathcal{A}_{CP}^{x}

BACKUP SLIDES

New Physics in Penguins?

model	current	A_0	A_+	<i>A</i> _
SM	$ar{s}\gamma^\mu(1-\gamma_5)bar{s}\gamma_\mu(1\pm\gamma_5)s$	~ 1	$\sim rac{m_V}{m_B}$	$\sim (rac{m_V}{m_B})^2$
RH vector	$ar{s}\gamma^\mu(1+\gamma_5)m{b}ar{s}\gamma_\mu(1\pm\gamma_5)m{s}$	~ 1	$\sim (rac{m_V}{m_B})^2$	$\sim \frac{m_V}{m_B}$
Tensor/scalar	$ar{s}\sigma^{\mu u}(1+\gamma_5)bar{s}\sigma_{\mu u}(1+\gamma_5)s$	$\sim \frac{m_V}{m_B}$	~ 1	$\sim (\frac{m_V}{m_B})^2$
Tensor/scalar	$ar{s}\sigma^{\mu u}(1-\gamma_5)bar{s}\sigma_{\mu u}(1-\gamma_5)s$	$\sim \frac{m_V}{m_B}$	$\sim (\frac{m_V}{m_B})^2$	~1

• Our observation: $|A_0| \simeq |A_+| \gg |A_-|$

- tune SM + RH interference
- SM + Tensor "exotic"

Polarization Anomaly: Some Ad hoc Models in SM

Annihilation diagram (hep-ph/0405134)

not conclusive (vary free parameters)

formally suppressed $1/m_b$

đ

Ь

 \mathcal{O}_{7}^{\pm}

D

• Transverse gluon from $b \rightarrow sg$ (hep-ph/0408007)

analogy with γ from $B\to K^*\gamma$ seems to be suppressed, not conclusive

• EM penguin (hep-ph/0512258)

similar polarization to $B \to K^* \gamma$ appears only for neutral vector mesons

- Charming penguins (hep-ph/0401188) rely on free parameters, not conclusive
- Long-distance rescattering (hep-ph/0409317) model-dependent, constrained by other data expect $f_L \sim f_{||} \gg f_{\perp}$ (?)