

B→ $\pi^+\pi^-\pi^0$ time-dependent Dalitz analysis from Belle

DPF/JPS 2006

Chin-chi Wang National Taiwan University

DPF/JPS 2006

C.C.Wang

A siles a ro

- Time-dependent Dalitz analysis:
 - Introduction.
 - Event Selection.
 - $\pi\pi$ Lineshape determination.
 - Singal fraction determination.
 - Dalitz and Δt fit.
- ϕ_2 constraint.
- Summary.

Introduction

CKM Matrix:

Unitarity Triangle

For better fitting performance, we redifined the PDF by

 $|A_{3\pi}|^{2} \pm |\overline{A}_{3\pi}|^{2} = \sum_{\kappa \in [+, -, 0]} |f_{\kappa}|^{2} U_{\kappa}^{\pm} + 2 \sum_{\kappa < \sigma \in [+, -, 0]} (Re[f_{\kappa}f_{\sigma}^{*}] U_{\kappa\sigma}^{\pm,Re} - Im[f_{\kappa}f_{\sigma}^{*}] U_{\kappa\sigma}^{\pm,Im})$ $Im(\frac{q}{p} A_{3\pi}^{*} \overline{A}_{3\pi}) = \sum_{\kappa < \sigma \in [+, -, 0]} (Re[f_{\kappa}f_{\sigma}^{*}] I_{\kappa\sigma}^{Im} + Im[f_{\kappa}f_{\sigma}^{*}] I_{\kappa\sigma}^{Re})$ 27 parameters U and I to be obtained.

- Charged track (π^{\pm}) selection
 - Interaction point, transverse momentum, particle identification.
- Neutral track (π⁰) selection
 - Photon energy, π^0 momentum, π^0 invariant mass.
- Continuum suppression based on event topology.
- Kinematic selection:
 - Grand region: -0.2< Δ E<0.2 (GeV), 5.2< M_{bc} <5.3 (GeV/c²).
 - Signal region: -0.1< Δ E<0.08 (GeV), M_{bc}>5.27 GeV/c².
- Best candidate selection.
- Veto on Dalitz plot (ρ mass band is selected).
 - 0.55 GeV/c²< $M_{\pi\pm\pi}$ 0<1.0 GeV/c².
 - 0.55 GeV/c²< $M_{\pi^+\pi^-}$ <0.95 GeV/c².

Event Category

- Signal:
 - Correctly reconstructed.
 - Self-cross-feed (SCF):
 - ~20% to correctly reconstructed events.
 - π^{\pm} replaced (~6%).
 - π^0 replaced (~14%).
- Background:
 - Continuum qq
 (q=u,d,s)
 - Dominant source (~60% in signal region).
 - BĒ
 - ~8% in signal region.

0.9 0.8 0.7

0.6 0.5

0.4 0.3

0.2 0.1

 $\pi\pi$ lineshape:

$$f(s) = BW_{\rho}(s) + \beta BW_{\rho'}(s) + \gamma BW_{\rho''}(s)$$

- $\pi\pi$ lineshape could be different for 6 decay amplitudes.
- Neither good theoretical estimation nor other experimental result to constrain β and γ .

- We determined the ρ lineshape from data.
 - The lineshape is fitted with looser Dalitz veto.
 - Averaged β and γ are used in the nominal fit.
 - The systematic error is reduced to an acceptable level.

- ρ' and ρ'' mass and width are based on PDG2005 values.
- We obtained:

 $|\beta| = 0.30^{+0.06}_{-0.05}$ $arg\beta = (213^{+15}_{-19})^{o}$ $|\gamma| = 0.07 \pm 0.03$ $arg\gamma = (91^{+27}_{-32})^{o}$

• $\Delta E-M_{bc}$ and Dalitz simultaneous fit. 500• From 414fb⁻¹: - 987±42 signal yield inside the signal box. 0 5.2 5.22 5.24 5.28 5.26 5.3 M_{bc} (GeV/c²) 250 ΔE Contraction 200 CeV Events / 0.001 CeV 100 CEV red solid: correctly reconstructed signal red dashed: SCF hatched:qq 50 blue dashed: BB 0 ⊾ -0.2 -0.1 0.1 0.2 0 ∆E (GeV)

Then, we perform the Dalitz and Δt simultaneous maximum likelihood fit for the events inside signal box after fixing the signal and backgroud fractions.

\sum_{RLLE} Dalitz and Δt simultaneous fit result (2)

hep-ex/0609003

 $+0.22 \pm 0.15$ (stat.) ± 0.10 (syst.) -0.62 ± 0.17 (stat.) ± 0.09 (syst.) $+0.14 \pm 0.11$ (stat.) ± 0.09 (syst.) -1.70 ± 1.59 (stat.) ± 0.77 (syst.) $-2.46 \pm 1.39(\text{stat.}) \pm 0.86(\text{syst.})$ -0.70 ± 1.59 (stat.) ± 0.86 (syst.) -2.21 ± 1.71 (stat.) ± 1.03 (syst.) -0.83 ± 0.98 (stat.) ± 0.65 (syst.) $-0.79 \pm 1.59(\text{stat.}) \pm 1.05(\text{syst.})$

\sum_{α} Dalitz and Δ t simultaneous fit result (3)

hep-ex/0609003

 I_+ I_{-} I_0 $I_{+-}^{\operatorname{Re}}$ $I_{\pm 0}^{\operatorname{Re}}$ $I_{-0}^{\operatorname{Re}}$ I^{Im}_{\perp} I_{+0}^{Im} I_{-0}^{Im}

$$\begin{array}{l} -0.03 \pm 0.11(\mathrm{stat.}) \pm 0.06(\mathrm{syst.}) \\ +0.11 \pm 0.11(\mathrm{stat.}) \pm 0.05(\mathrm{syst.}) \\ +0.02 \pm 0.09(\mathrm{stat.}) \pm 0.06(\mathrm{syst.}) \\ +1.62 \pm 2.65(\mathrm{stat.}) \pm 1.23(\mathrm{syst.}) \\ +1.45 \pm 2.41(\mathrm{stat.}) \pm 1.12(\mathrm{syst.}) \\ -0.65 \pm 1.63(\mathrm{stat.}) \pm 1.49(\mathrm{syst.}) \\ -1.76 \pm 2.42(\mathrm{stat.}) \pm 1.31(\mathrm{syst.}) \\ +0.00 \pm 2.06(\mathrm{stat.}) \pm 1.15(\mathrm{syst.}) \\ -2.58 \pm 1.72(\mathrm{stat.}) \pm 1.33(\mathrm{syst.}) \end{array}$$

0

-0.8-0.6-0.4-0.2 0

cosθ

Fit result (Dalitz plot)

hep-ex/0609003

0.20.40.60.8

$\rho^{-}\pi^{+}$ enhanced region

$\rho^0 \pi^0$ enhanced region

C.C.Wang DPF/JPS 2006 B $\rightarrow \pi^+\pi^-\pi^0$ time-dependent Dalitz analysis from Belle

.2 0

cosθ

-0.8-0.6-0.4-0.

Ω

hep-ex/0609003

$\rho^+\pi^-$ enhanced region $\rho^-\pi^+$ enhanced region $\rho^0\pi^0$ enhanced region

hep-ex/0609003

$$\begin{aligned} A_{\rho\pi}^{CP} &= \frac{U_{+}^{+} - U_{-}^{+}}{U_{+}^{+} + U_{-}^{+}} & \text{hep-ex/0609003} \\ C &= (\frac{U_{+}^{+}}{U_{+}^{+}} + \frac{U_{-}^{-}}{U_{-}^{+}})/2 \\ \Delta C &= (\frac{U_{+}^{+}}{U_{+}^{+}} - \frac{U_{-}^{-}}{U_{-}^{+}})/2 \\ S &= (\frac{I_{+}}{U_{+}^{+}} + \frac{I_{+}}{U_{-}^{-}})/2 \\ S &= (\frac{I_{+}}{U_{+}^{+}} + \frac{I_{+}}{U_{-}^{-}}) \\ \Delta S &= (\frac{I_{+}}{U_{+}^{+}} - \frac{I_{+}}{U_{-}^{-}}) \\ \Delta S &= (\frac{I_{+}}{U_{+}^{+}} - \frac{I_{+}}{U_{-}^{-}}) \\ A_{\rho^{0}\pi^{0}} &= -\frac{U_{0}}{U_{0}^{+}} \\ S_{\rho^{0}\pi^{0}} &= -\frac{U_{0}}{U_{0}^{+}} \\ S_{\rho^{0}\pi^{0}} &= \frac{2I_{0}}{U_{0}^{+}} \end{aligned}$$

Direct CP violation

hep-ex/0609003

ϕ_2 constraint from $B \rightarrow \pi^+ \pi^- \pi^0$

Another method non-CP-eigenstate $B \rightarrow \rho \pi (\pi^+ \pi^- \pi^0)$

 ϕ_2 can be constrainted by time-dependent Dalitz analysis without ambiquities First proposed by A.E.Snyder and H.R.Quinn Phys. Rev. D48. 2139 (1993)

1	ABLE I. The time and kinematic d	ependence of contributions to the distribu	tion of events.	A THE P	1	and () and	We de	vinar tos
Time dependence	Kinematic form	Amplitude measured	α dependence (all $P_i = 0$)		-			CORE MAD
1	$f^{+}f^{+}*$	$S_{3}S_{3}^{*} + \overline{S}_{4}\overline{S}_{4}^{*}$	1			Contraction of the second s		34 March 18
$\cos(\Delta M t)$	$f^{+}f^{+*}$	$S_3S_3^* - \bar{S}_4\bar{S}_4^*$	1			A CANADA AND AND AND AND AND AND AND AND AN		L. Cher M. L.
$sin(\Delta Mt)$	$f^{+}f^{+}*$	$\operatorname{Im}(q\overline{S}_4S_3^*)$	$sin(2\alpha)$		E 1/	NAME AND AND A COMPANY	A CONTRACTOR STATES	A CARLON AND A CARLO
1	f ⁻ f ⁻ *	$S_4S_4^* + \bar{S}_3\bar{S}_3^*$	1				A CONTRACT MANAGER	The State
$\cos(\Delta M t)$	$f^{-}f^{-*}$	$S_4S_4^* - \overline{S}_3\overline{S}_3^*$	1			Other advant	00001	ALL
$\sin(\Delta M t)$	$f^{-}f^{-*}$	$\operatorname{Im}(q\overline{S}_3S_4^*)$	$sin(2\alpha)$			Uner advan	ades	
1	$f^0 f^{0*}$	$(S_5S_5^* + S_5S_5^*)/4$	1			othor dard	agoo.	
$\cos(\Delta Mt)$	f ⁰ f ⁰ *	$(S_5S_5^* - S_5S_5^*)/4$	1				-	
$sin(\Delta Mt)$	f^{of}	$Im(qS_5S_5)/4$	$sin(2\alpha)$				the the start	
$1 \cos(\Lambda Mt)$	$\mathbf{Re}(f^+f^-*)$	$Re(S_3S_4 + S_4S_3)$ $R_2(S_2S^* - \overline{S}, \overline{S}^*)$	1			Some paramete	rs in the	
$sin(\Delta Mt)$	$\mathbf{Re}(f^+f^{-*})$	$Im(a\overline{S}, S^* - a^*S, \overline{S}^*)$	$sin(2\alpha)$			Some paramote		
1	$Im(f^+f^{-*})$	$Im(S_2S_4^* + \bar{S}_4\bar{S}_4^*)$	1					
$\cos(\Delta M t)$	$Im(f^+f^{-*})$	$\operatorname{Im}(S_3S_4^* - \overline{S}_4\overline{S}_4^*)$	1			Dolitz and time	dopondor	s +
$sin(\Delta Mt)$	$\operatorname{Im}(f^+f^{-*})$	$\operatorname{Re}(q\overline{S}_4S_4^* - q^*S_3\overline{S}_3^*)$	$\cos(2\alpha)$			Daniz and line-	uepender	
1	$\operatorname{Re}(f^+f^{0*})$	$Re(S_3S_5^* + \bar{S}_4\bar{S}_5^*)/2$	1					
$\cos(\Delta M t)$	$\operatorname{Re}(f^+f^{0*})$	$\operatorname{Re}(S_3S_5^* - \overline{S}_4\overline{S}_5^*)/2$	1			بالمنبط المتصحيح مناجعه والماد		
$sin(\Delta Mt)$	$\operatorname{Re}(f^+f^{0*})$	$\mathrm{Im}(q\overline{S}_4S_5^* + q^*S_3\overline{S}_5^*)/2$	$sin(2\alpha)$			decay amplitude	es nave	
1	$\operatorname{Im}(f^+f^{0*})$	$Im(S_3S_5^* + S_4S_5^*)/2$	1			accay amplitude	50 114 0	
$\cos(\Delta Mt)$	$Im(f^+f^{0*})$	$Im(S_3S_5^* - S_4S_5^*)/2$	1			the same		di di
$sin(\Delta Mt)$	$\operatorname{Im}(f^+f^{0*})$ $\operatorname{R}_{2}(f^-f^{0*})$	$Re(qS_4S_5^* - q^*S_3S_5^*)/2$	$\cos(2\alpha)$		-	coc(2da) donon	doncoc	- 414 - 114 cm
$cos(\Delta Mt)$	$\mathbf{Re}(f = f^{0*})$	$Re(S_4S_5 + S_3S_5)/2$ $R_2(S_5S_7 - \overline{S}_5\overline{S}^*)/2$	1	1	2.00	$(03(2\psi))$ uspen	UCHICES.	The stand of the stand of the
$sin(\Delta Mt)$	$\operatorname{Re}(f^{-}f^{0*})$	$Im(a\bar{S}_{3}S_{4}^{*} - a^{*}S_{4}\bar{S}_{4}^{*})$	$sin(2\alpha)$					
1	$Im(f^{-}f^{0*})$	$Im(S_4S_5^* + \bar{S}_3\bar{S}_5^*)/2$	1		101 200		and the second	
$\cos(\Delta M t)$	$\operatorname{Im}(f^{-}f^{0*})$	$Im(S_4S_5^* - \bar{S}_3\bar{S}_5^*)/2$	1	(<u>*</u>				
$sin(\Delta Mt)$	$\operatorname{Im}(f^-f^{0*})$	$\operatorname{Re}(q\bar{S}_{3}S_{5}^{*}-q^{*}S_{4}\bar{S}_{5}^{*})/2$	$\cos(2\alpha)$					

Summary

- First time-dependent-Dalitz and isospin analysis for ϕ_2 extraction.
- $\phi_2 = (83^{+12}_{-23})^o$
- $B \rightarrow \rho^0 \pi^0$ time-dependent parameters:
 - $-A_{\rho^0\pi^0} = -0.45 \pm 0.35 \pm 0.32$
 - $-S_{\rho^0\pi^0} = +0.15 \pm 0.57 \pm 0.43$
- 2.4 σ direct CP violation.
 - $-A_{\rho\pi}^{+-} = +0.22 \pm 0.08 \pm 0.05$ $-A_{\sigma\pi}^{-+} = +0.08 \pm 0.17 \pm 0.12$

DPF/JPS 2006 B $\rightarrow \pi^+\pi^-\pi^0$ time-dependent Dalitz analysis from Belle C.C.Wang

al alera sa

Backup slides

$$\begin{aligned} |A_{3\pi}|^{2} \pm |\overline{A}_{3\pi}|^{2} &= \sum_{\kappa \in [+, -, 0]} |f_{\kappa}|^{2} U_{\kappa}^{\pm} + 2 \sum_{\kappa < \sigma \in [+, -, 0]} (Re[f_{\kappa}f_{\sigma}^{*}]U_{\kappa\sigma}^{\pm,Re} - Im[f_{\kappa}f_{\sigma}^{*}]U_{\kappa\sigma}^{\pm,Im}) \\ Im(\frac{q}{p}A_{3\pi}^{*}\overline{A}_{3\pi}) &= \sum_{\kappa < \sigma \in [+, -, 0]} (Re[f_{\kappa}f_{\sigma}^{*}]I_{\kappa\sigma}^{Im} + Im[f_{\kappa}f_{\sigma}^{*}]I_{\kappa\sigma}^{Re}) \\ U_{\kappa}^{\pm} &= (|A^{\kappa}|^{2} \pm |\overline{A}^{\kappa}|^{2})/N \\ U_{\kappa\sigma}^{\pm,Re(Im)} &= Re(Im)[A^{\kappa}A^{\sigma*} \pm \overline{A}^{\kappa}A^{\sigma*}]/N \\ I_{\kappa} &= Im[\overline{A}^{\kappa}A^{\sigma*} - A^{\sigma}A^{\kappa*}]/N \\ I_{\kappa\sigma}^{Im} &= Im[\overline{A}^{\kappa}A^{\sigma*} + A^{\sigma}A^{\kappa*}]/N \end{aligned}$$

Using $m_{\pi 0}$ and likelihood ratio

 $M_{bc} \equiv \sqrt{E_{beam}^2 - P_B^2}$

Systematic Uncertainties

	U_{-}^{+}	U_0^+	$U_{+-}^{+,{\rm Re}}$	$U_{+0}^{+,{\rm Re}}$	$U_{-0}^{+,\mathrm{Re}}$	$U_{+-}^{+,\mathrm{Im}}$	$U_{+0}^{+,{\rm Im}}$	$U_{-0}^{+,\mathrm{Im}}$
ρ' and ρ''	0.01	0.01	0.29	0.19	0.26	0.32	0.37	0.29
SCF	0.01	0.02	0.31	0.14	0.17	0.03	0.03	0.10
Signal Dalitz	0.02	0.01	0.24	0.15	0.19	0.13	0.06	0.13
BG Dalitz	0.02	0.01	0.16	0.12	0.14	0.14	0.12	0.22
Other $\pi\pi\pi$	0.06	0.03	0.10	0.08	0.10	0.15	0.10	0.08
BG fraction	0.03	0.02	0.14	0.19	0.13	0.23	0.07	0.22
Physics	0.02	< 0.01	0.01	0.02	0.02	0.01	0.01	0.02
BG Δt	< 0.01	< 0.01	0.03	0.01	0.02	0.02	0.01	0.02
Vertexing	0.02	0.02	0.02	0.16	0.11	0.08	0.08	0.09
Resolution	< 0.01	< 0.01	0.04	0.07	0.03	0.04	0.03	0.02
Flavor tagging	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.01
Fit bias	0.01	0.01	0.16	0.22	0.07	0.09	0.22	0.24
TSI	< 0.01	< 0.01	0.01	0.01	0.01	0.03	0.01	0.01
Total	0.08	0.05	0.57	0.46	0.44	0.49	0.47	0.53

	U_{+}^{-}	U_{-}^{-}	U_0^-	$U_{+-}^{-,{\rm Re}}$	$U_{+0}^{-,{\rm Re}}$	$U_{-0}^{-,\mathrm{Re}}$	$U_{+-}^{-,{\rm Im}}$	$U_{+0}^{-,{\rm Im}}$	$U_{-0}^{-,\mathrm{Im}}$
ρ' and ρ''	0.02	0.02	0.05	0.42	0.31	0.41	0.77	0.45	0.36
SCF	0.02	0.03	0.03	0.29	0.27	0.32	0.09	0.25	0.17
Signal Dalitz	0.01	0.02	0.02	0.28	0.32	0.32	0.38	0.15	0.53
BG Dalitz	0.04	0.03	0.02	0.29	0.36	0.30	0.31	0.22	0.41
Other $\pi\pi\pi$	0.05	0.05	0.03	0.12	0.11	0.14	0.15	0.11	0.13
BG fraction	0.03	0.04	0.02	0.31	0.30	0.32	0.38	0.22	0.49
Physics	0.01	0.01	< 0.01	0.04	0.03	0.04	0.04	0.02	0.06
BG Δt	< 0.01	< 0.01	< 0.01	0.03	0.04	0.02	0.04	0.02	0.05
Vertexing	0.04	0.02	0.05	0.17	0.45	0.16	0.08	0.10	0.27
Resolution	0.01	0.01	0.01	0.16	0.17	0.32	0.11	0.10	0.29
Flavor tagging	0.01	0.01	< 0.01	0.03	0.04	0.04	0.05	0.03	0.03
Fit bias	0.01	0.03	< 0.01	0.05	0.07	0.12	0.18	0.02	0.23
TSI	0.04	0.04	0.01	0.05	0.07	0.03	0.02	0.06	0.01
Total	0.10	0.09	0.09	0.77	0.86	0.86	1.03	0.65	1.05

Systematic Uncertainties

	I_+	Ι_	I_0	I_{+-}^{Re}	I_{+0}^{Re}	I_{-0}^{Re}	I_{+-}^{Im}	$I_{\pm 0}^{\mathrm{Im}}$	I_{-0}^{Im}
ρ' and ρ''	0.03	0.02	0.04	0.95	0.59	1.32	0.89	0.84	0.89
SCF	0.01	0.01	0.01	0.09	0.64	0.07	0.50	0.08	0.65
Signal Dalitz	0.01	0.01	0.01	0.33	0.29	0.30	0.31	0.35	0.31
BG Dalitz	0.01	0.01	0.01	0.34	0.38	0.30	0.32	0.34	0.33
Other $\pi\pi\pi$	0.03	0.03	0.02	0.17	0.15	0.18	0.22	0.15	0.20
BG frac.	0.02	0.01	0.01	0.44	0.34	0.33	0.32	0.37	0.29
Physics	0.01	0.01	< 0.01	0.05	0.06	0.03	0.05	0.05	0.05
BG Δt	< 0.01	< 0.01	< 0.01	0.05	0.04	0.04	0.05	0.04	0.11
Vertexing	0.02	0.02	0.04	0.16	0.28	0.14	0.42	0.37	0.28
Resolution	0.01	0.01	0.01	0.30	0.21	0.18	0.35	0.25	0.28
Flavor tagging	< 0.01	< 0.01	< 0.01	0.04	0.07	0.04	0.03	0.07	0.03
Fit bias	< 0.01	0.01	< 0.01	0.12	0.01	0.27	0.09	0.09	0.22
TSI	0.01	< 0.01	0.01	0.09	0.07	0.04	0.04	0.03	0.07
Total	0.06	0.05	0.06	1.23	1.12	1.49	1.31	1.15	1.33

Isospin relation

$$\begin{aligned} A^{+} &\equiv A(B^{0} \rightarrow \rho^{+} \pi^{-}) = e^{-i\phi_{2}}T^{+} + P^{+} \\ A^{-} &\equiv A(B^{0} \rightarrow \rho^{-} \pi^{+}) = e^{-i\phi_{2}}T^{-} + P^{-} \\ A^{0} &\equiv A(B^{0} \rightarrow \rho^{0} \pi^{0}) = e^{-i\phi_{2}}T^{0} - \frac{1}{2}(P^{+} + P^{-}) \\ A^{+0} &\equiv A(B^{+} \rightarrow \rho^{+} \pi^{0}) = [e^{-i\phi_{2}}T^{+0} + P^{+} - P^{-}]/\sqrt{2} \\ A^{0+} &\equiv A(B^{+} \rightarrow \rho^{0} \pi^{+}) = [e^{-i\phi_{2}}(T^{+} + T^{+} + 2T^{0} - T^{+0}) - P^{+} + P^{-}]/\sqrt{2} \\ \overline{A}^{+} &\equiv (p/q)A(\overline{B}^{0} \rightarrow \rho^{+} \pi^{-}) = e^{i\phi_{2}}T^{-} + P^{-} \\ \overline{A}^{-} &\equiv (p/q)A(\overline{B}^{0} \rightarrow \rho^{-} \pi^{+}) = e^{i\phi_{2}}T^{0} - \frac{1}{2}(P^{+} + P^{-}) \\ \overline{A}^{-0} &\equiv (p/q)A(\overline{B}^{0} \rightarrow \rho^{-} \pi^{0}) = [e^{i\phi_{2}}T^{+0} + P^{+} - P^{-}]/\sqrt{2} \\ \overline{A}^{0-} &\equiv (p/q)A(B^{-} \rightarrow \rho^{0} \pi^{-}) = [e^{i\phi_{2}}(T^{+} + T^{-} + 2T^{0} - T^{+0}) + P^{+} + P^{-}]/\sqrt{2} \end{aligned}$$

