Time-dept. CP Asymmetries in $B \rightarrow f_0$ Ks, ρ^0 Ks, ω Ks, Ks π^0 at Belle

Yuan CHAO (趙元) National Taiwan University for the Belle Collaboration

Joint Meeting of Pacific Region Particle Physics Communities (JPS/DPF 2006) Oct. 29-Nov. 3, 2006 Honolulu, Hawaii Univ.

Introduction

Tsukuba, Japan 3.5 GeV e⁺ on 8 GeV e⁻ $W_{CM} = M(Y(4s))$ 3km circumference ~11mrad crossing angle $L_{peak} = 1.65 \times 10^{34} / cm^2/s^2$

CP Asymmetry

 Δt : proper time Δm : mass difference

$$A(\Delta t) = \frac{\Gamma(\bar{B}^{0}(\Delta t) \to f_{CP}) - \Gamma(\bar{B}^{0}(\Delta t) \to f_{CP})}{\Gamma(\bar{B}^{0}(\Delta t) \to f_{CP}) + \Gamma(\bar{B}^{0}(\Delta t) \to f_{CP})}$$

$$= \frac{2\Im\lambda}{1+|\lambda|^{2}}\sin(\Delta m \cdot \Delta t) + \frac{1-|\lambda|^{2}}{1+|\lambda|^{2}}\cos(\Delta m \cdot \Delta t)$$

$$S$$

$$A(= -C)$$
Belle BaBar
Direct CPV
$$\lambda = \frac{q}{p}\frac{A(\bar{B}^{0} \to f)}{A(\bar{B}^{0} \to f)}$$

Theoretical Estimation

- η'K⁰, φK⁰, K_SK_SK_S: "Golden modes" smallest expected diff. from sin2φ₁ in SM (previous talk)
- Expected differences are mostly positive:

New tCPV result for $B^{0} \rightarrow f_{0}K_{s} \& B^{0} \rightarrow \omega K_{s}$

Belle 2006: t*CP*V in $B^0 \rightarrow f_0 K_s$

- Signal yeild extracted from a 3D fit
- Non-resonance contribution:
 - K*π, K₀*π and ππKs eliminated with helicity $|\cos \theta_{hel}| < 0.9$
- Fitting components:
 f₀Ks ρKs f_xKs, non-res.
- Interference considered in syst. err.

Squared Dalitz plot

Belle 2006: t*CP*V in $B^0 \rightarrow f_0 K_s$

535M BB

BELLE

Belle 2006: t*CP*V in $B^0 \rightarrow \omega K_s$

 Signal yield extracted from a 4D fit Mbc, DE, M(3π), R_{s/b}

535M *BB*

New tCPV result for $B^0 \rightarrow K_s \pi^0$

tCPV in K_sπ⁰

- b \rightarrow s penguin dominant mode: $S \approx \sin 2\phi_1$ (Possible deviation within SM ~O(0.1))
- A Member of Kπ Family
 - $\ensuremath{\mathcal{A}}\xspace$ is important to check the sum rule

$$\begin{split} A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+}) \frac{B(K^{0}\pi^{+})}{B(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} \\ = A_{CP}(K^{+}\pi^{0}) \frac{2B(K^{+}\pi^{0})}{B(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0}) \frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})} \\ \text{[Gronau, Phys. Lett. B627, 82 (2005)]} \end{split}$$

No primary tracks from B vertex
 Vertex reconstruction with K_s trajectory and IP

Vertex Reconstruction with K_s

Extrapolate K_s track to the Interaction Point (IP)
 Vertex recon. eff. ~33%
 Events w/o the vertex can still be used to measure A

$B^{0} \rightarrow K_{s} \pi^{0} tCPV Result$

535M *B***B**

$\text{``sin2}\phi_1\text{''} = +0.33 \pm 0.35(\text{stat}) \pm 0.08(\text{syst})$ $\mathcal{A} = -0.05 \pm 0.14(\text{stat}) \pm 0.05(\text{syst})$

Consistent with:

- $\sin 2\phi_1$ from $b \rightarrow c$
- the sum rule expectation $\mathcal{A} = -0.15 \pm 0.06$

using Belle 535M \mathcal{A} , Br and PDG2006 τ^+/τ^0

hep-ex/0609006

20

$\phi_1(\beta)$ from b \rightarrow s penguins

	$\sin(2\beta^{\text{eff}}) \equiv$	≡ sin(20	ϕ_1^{eff})	HFAG ICHEP 2006 PRELIMINARY
b→ccs	World Average			0.68 ± 0.03
φ K ^o	Average	⊢ ★ -1		0.39 ± 0.18
η′ Κ ^ο	Average	١ ×		0.59 ± 0.08
K _s K _s K _s	Average	+ +	4	0.51 ± 0.21
$\pi^0 \ K_S$	Averåge	⊢ ★ - I		0.33 ± 0.21
ρ ⁰ K _S	Average	*	-	0.17 ± 0.58
ωK _s	Average	ب ا	4	0.48 ± 0.24
f _o K ^o	Average	⊢★-1		0.42 ± 0.17
π ⁰ π ^ρ Κ _S	Average			-0.84 ± 0.71
K⁺ K⁻ K⁰	Average	₩ ★	⊣ 0.	$58 \pm 0.13 \begin{array}{c} ^{+0.12} _{-0.09} \end{array}$
.8 -1.6 -1.4	-1.2 -1 -0.8 -0.6 -0.4 -0.2	0 0.2 0.4 0.6	0.8 1	1.2 1.4 1.6

More statistics are crucial in each studied mode

Smaller than b→ccs in all of the 9 modes
 Theorists tend to predict *increase* on sin2β_{eff}

QCD factorization calculation of ∆S

Naïve average of all $b \rightarrow s$ modes $sin2\beta^{eff} = +0.52 \pm 0.05$ 2.6 σ deviation between **Penguin** and **Tree** (b \rightarrow s) (b \rightarrow c)

Backup Slides

BTime-dept. CP Asym.

Flavor Tag

Systematic Errors				
	η'Κ⁰		$K_{\rm s}\pi^0$	
	as	dA	as	dA
Vertexing 0.020		0.013	0.021 (0.011
Flavor tagging 0.005		0.004	0.007 (0.008
Resolution	0.035	0.024	0.066	0.010
Physics	0.001	0.007	0.007	0.001
Possible Fit bias	0.007	0.005	0.009	0.004
BG fraction	0.020	0.022	2 0.009	0.001
BG dt shape	0.004	0.002	0.046	0.019
Tag-side interference	0.001	0.024	e 0.001	0.043
Total	0.043	0.047	0.082	0.053

Systematic Errors

$f^{0}K_{s}$			ωK	
	dS	dA	dS	dA
Vertexing	0.0127	0.0211 Vertexing	0.013	0.021
Flavor tag	0.0054	0.0062Flavor tag	0.015	0.006
Resolution	0.0224	0.0083 Resolution	0.052	0.024
Physics	0.0022	0.0021 Physics	0.005	0.003
Fit bias	0.0620	0.0212 Fit bias	0.011	0.014
BG frac	0.0366	0.0292 BG frac	0.041	0.024
BG dt	0.0851	0.0396 BG dt	0.006	0.005
TSI	0.001	0.043 TSI	0.001	0.044
Total	0.1145	0.0726 Total	0.070	0.062

CP Eigenvalues

Mode	ξ_{f}	N_{sig}
ωK_S^0	-1	118 ± 18
$f_0 K_S^0$	+1	377 ± 25
$K^0_S \pi^0$	-1	515 ± 32
$K^+K^-K^0_S$	$+0.86 \pm 0.18 \pm 0.09$	840 ± 34

Squared Dalitz plot

$$m' = \frac{1}{\pi} a \cos\left(\frac{2*(m_{12}-2*M_{\pi})}{(M_B-M_K-2*M_{\pi})}-1\right)$$

$$\theta' = \frac{1}{\pi} a \cos\left(\cos\theta_{12}\right)$$

where m_{12} : mass of $\pi^+\pi^-$
 $\cos\theta_{12}$: helicity of $\pi^+\pi^-$
 $\cos\theta_{12}$: helicity of $\pi^+\pi^-$

Component	Yield	fraction
$f_0 K_S$	$336.6^{+27.4}_{-27.2}$	0.607 ± 0.049
ρK_S	14.5 ± 3.4	0.159 ± 0.038
$f_x K_S$	$1.9^{+0.7}_{-0.6}$	0.102 ± 0.035
NR $(f_{NR} = 1 - f_{f_0} - f_{\rho} - f_{f_x})$	12.2 $(K^*\pi:1.2, K_0^*\pi:7.1, NR(K\pi):1.2, NR(\pi\pi):2.7)$	

Outline

- Introduction
- Experimental Apparatus
- Analysis Approaches
- Experimental Results
- Summary and Conclusions