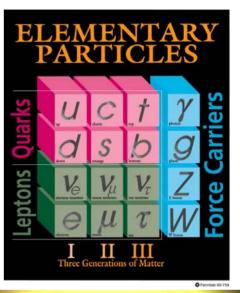
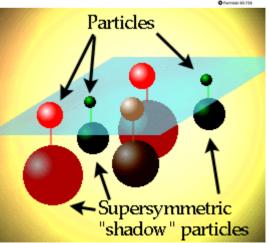
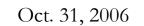

Search for Anomalous Production of Multi-lepton Events at CDF

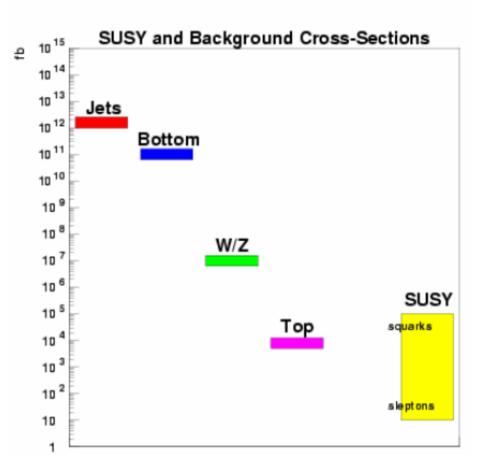



Outline

- Motivation
- R_pV SUSY
- CDF & lepton detection
- Analysis
- Results


Standard Model & Beyond

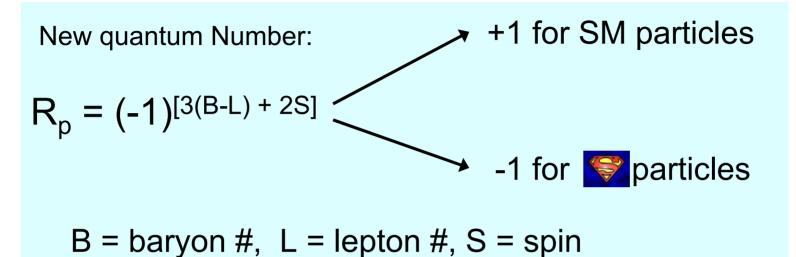
- The SM agrees extraordinarily well with detector measurements, but is there more?
- Many new physics models predict new particles at the electroweak scale (~100 GeV/c²).
- For example, in Supersymmetry a new particle is predicted for every one in the SM with different mass and spin.



3

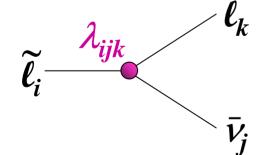
 Require a method to reduce backgrounds while preserving new physics signal.

Analysis Strategy


- At the Tevatron, jet production rate >> lepton production rate.
- Search for events with ≥ 3 charged leptons.
- Complements searches for leptons + ∉_{T.}
- Attempt to be as model independent as possible.
- Sensitive to R_pV SUSY, and other new physics models.

If R_p is conserved:

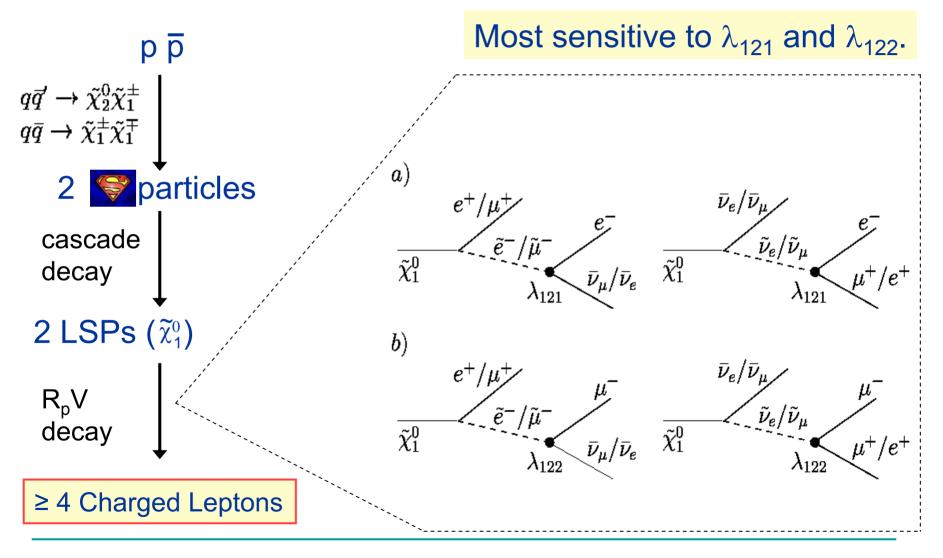
Lightest SUSY particle (LSP) is stable, dark matter candidate. SUSY particles are pair produced.

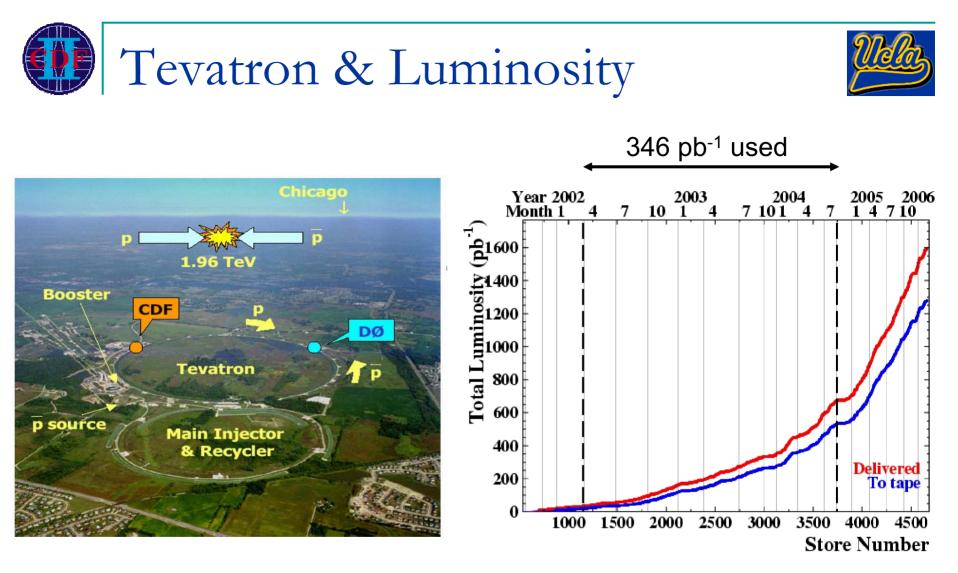


3 additional couplings:

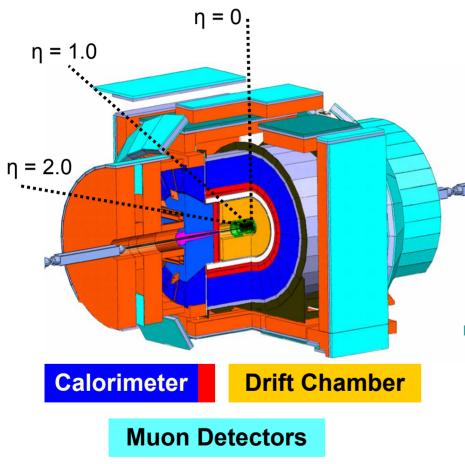
 $W_{RPV} = \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k$ Violates baryon #

Violate lepton #



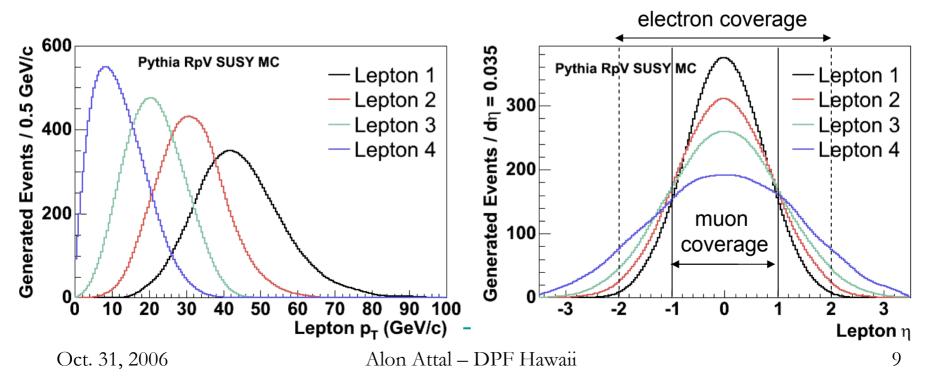


- Choose only $L_i L_i \overline{E}_k$ term $\neq 0$, protecting proton lifetime.
- $|\lambda| < 0.1$, only LSP decays via RpV coupling.



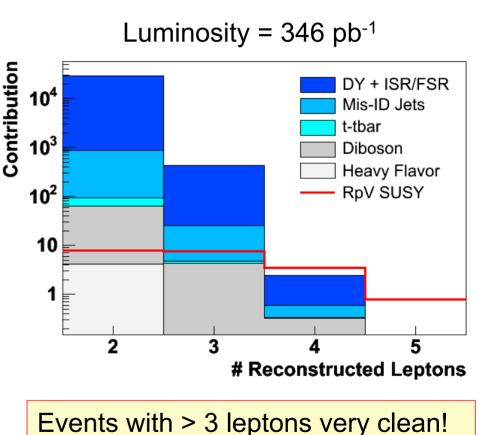
Data taken from March 2002 – August 2004

CDF Detector & Lepton ID


Electrons

- Track + Calorimeter Cluster
- 95% of energy in EM calorimeter
- |η| < 2.0
- Muons
 - Track plus "stub" in muon detector
 - Minimum ionizing
 - |η| < 1.0
- Lepton ID important to analysis
 - Studied in data and MC
 - Efficient (~90%)
 - Probability that jets are misidentified as leptons is small (≤ 0.02%)

Using m	Using mSUGRA framework			Analysis Reference Point:				
M ₀	M _{1/2}	tanβ	sign	A ₀	M _{χ̃}	$M \widetilde{\chi}_{2}^{0}$	M χ _±	σ
(GeV)	(GeV)		μ		(GeV)	(GeV)	(GeV)	(pb)
250	260	5	+	0	99.4	182.2	181.4	0.13

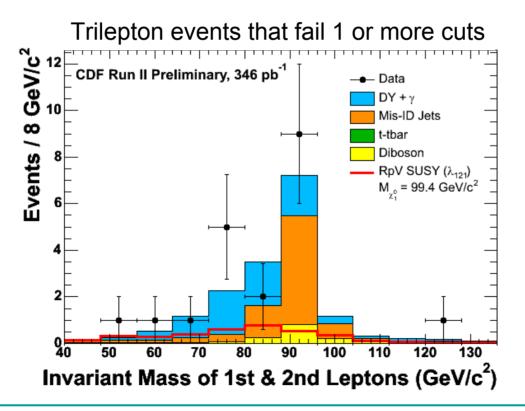


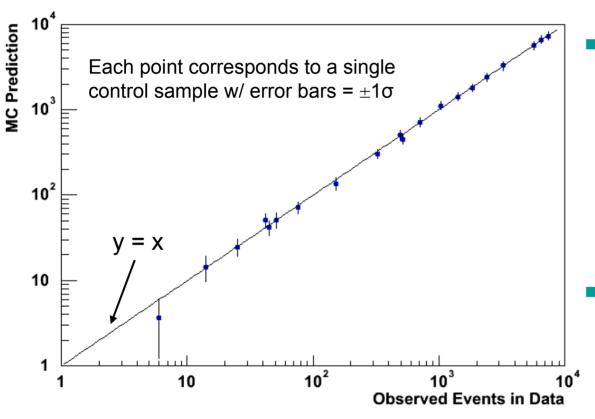
Use high-p_T lepton triggers
(p_T > 18 GeV/c).

Basic Event Selection

- Lepton p_⊤s: 20, 8, 5, 5 GeV/c.
- Dominant background from DY, impose following cuts on opposite sign leptons:
 - Impose Z veto cut (76-106 GeV/c²)
 - $|\Delta \phi| < 160^\circ$ cut.
- Require isolated leptons to reduce jet backgrounds.
- Low mass cut (> 15 GeV/c²) to reduce heavy flavor, and low mass resonances.

Before Event Selection





- Control samples are crucial to understanding our procedure
- Validate lepton ID efficiencies
- Validate selection cuts

Control Sample Overview

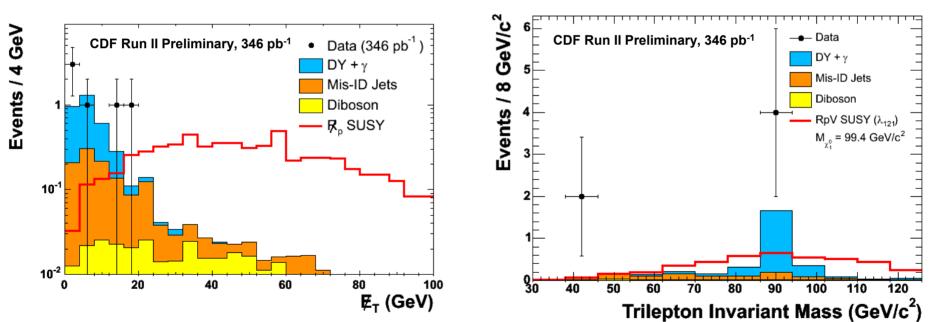
- 26 total control samples (summary on left)
 - By lepton type
 - Inside & outside Z window
 - Number of leptons
- Analysis procedure is validated through agreement between data and MC prediction

Trilepton Signal Samples				
Process	λ ₁₂₁ (eℓℓ)	λ ₁₂₂ (μ <i>ℓℓ</i>)		Ρ
Ζ/γ* + γ	2.1 ± 0.8	1.2 ± 1.0		Z
Ζ/γ* + W	0.2 ± 0.1	0.1 ± 0.1		Z
Fakes	0.7 ± 0.4	0.5 ± 0.3		Fa
Total Background	3.1 ± 0.9	1.9 ± 1.0		Т
RpV SUSY (λ_{121})	3.8 ± 0.4			R
RpV SUSY (λ_{122})		4.0 ± 0.4		R
Data				

≥ 4 Lepton Signal Sample			
Process	Signal		
Ζ/γ* + γγ	0.001 ± 0	0.001	
Ζ/γ* + Ζ/γ*	0.004 ± 0	0.002	
Fakes	0.004 ± 0	0.003	
Total Background 🤇	0.008 ± 0	0.004	
RpV SUSY (λ_{121})	1.5 ± 0.2	1	
RpV SUSY (λ_{122})	1.5 ± 0.3		

Very Clean Signature

Trilepton Signal Samples			
Process	λ ₁₂₁ (eℓℓ)	λ ₁₂₂ (μ <i>ℓℓ</i>)	
Ζ/γ* + γ	2.1 ± 0.8	1.2 ± 1.0	
Ζ/γ* + W	0.2 ± 0.1	0.1 ± 0.1	
Fakes	0.7 ± 0.4	0.5 ± 0.3	
Total Background	3.1 ± 0.9	1.9 ± 1.0	
RpV SUSY (λ_{121})	3.8 ± 0.4		
RpV SUSY (λ_{122})		4.0 ± 0.4	
Data	5	1	


≥ 4 Lepton Signal Sample			
Process	Signal		
Ζ/γ* + γγ	0.001 ± 0.001		
Ζ/γ* + Ζ/γ*	0.004 ± 0.002		
Fakes	0.004 ± 0.003		
Total Background	0.008 ± 0.004		
RpV SUSY (λ_{121})	1.5 ± 0.2		
RpV SUSY (λ_{122})	1.5 ± 0.3		
Data	0		

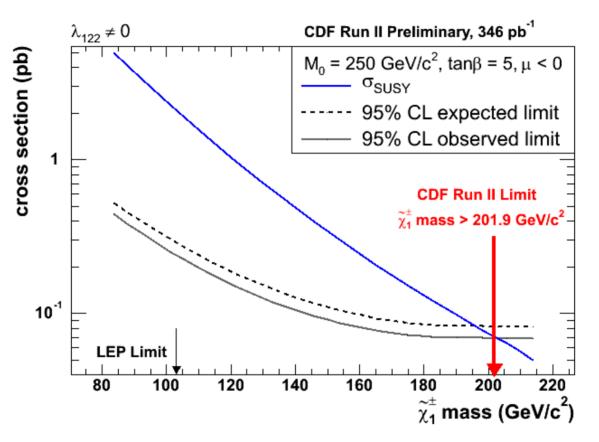
- Signal events: 4 eee, 1eeμ, 1 μμe
- Probability of observing \geq 5 events with 3.1 expected = 17%

15

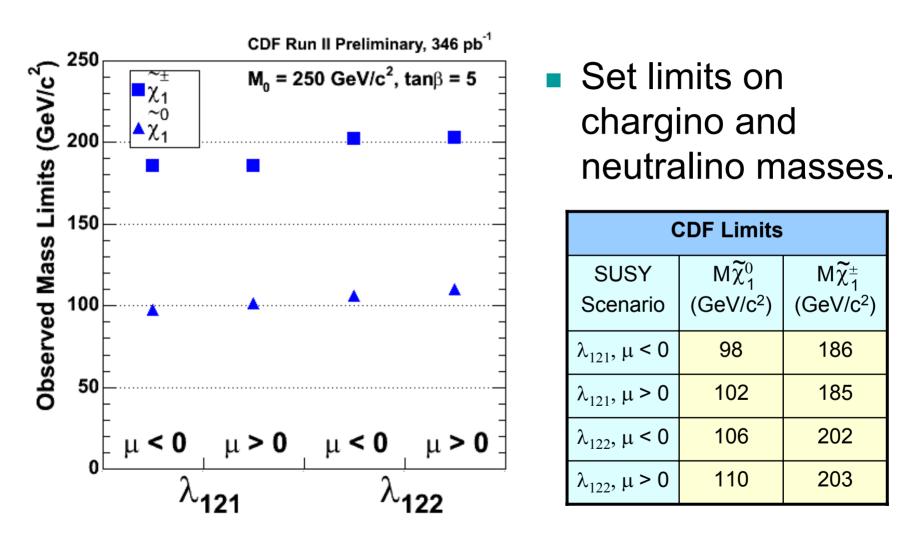
4 of the 6 events appear to be $Z + \gamma$ events.

- 2 of the 6 events appear to have mis-ID jets.
- Consistent with background prediction.

ā

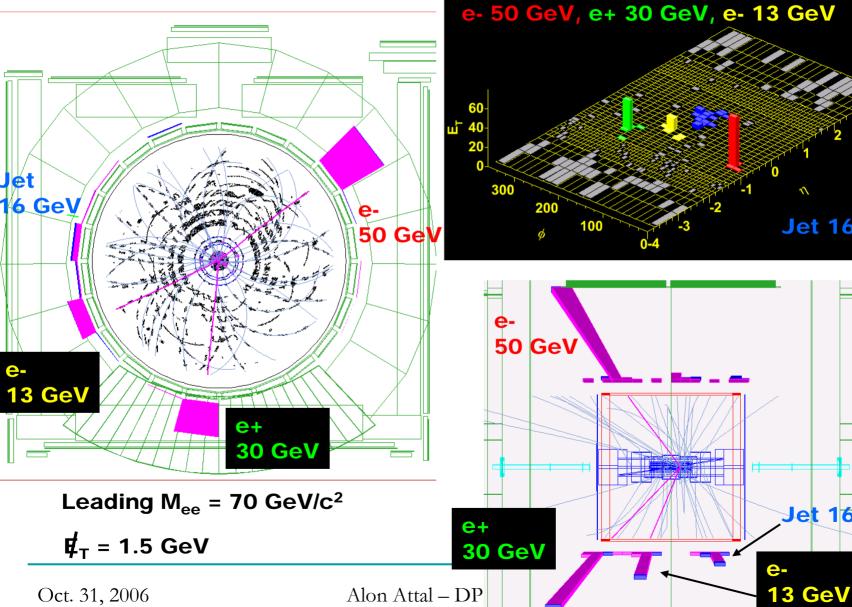


min



- Use Bayesian method to find σ_{obs}, combining 3 and ≥4 lepton signal samples.
- Set limits for both signs of μ , λ_{121} , and λ_{122} .

- We completed a search for new physics in the multilepton channel.
- We used a minimal amount of cuts to try and limit model dependence.
- No significant evidence of physics beyond the SM was detected.
- Limits on the lightest neutralino and chargino masses were set using an R_pV SUSY framework.
- The ≥ 4 lepton sample provides a promising new method to search for new physics with the higher luminosity currently being delivered to the Tevatron.



Jet 16 GeV

Jet 16 GeV

20

Limits					
SUSY	$M_{\tilde{\chi}_{1}^{0}}$		${\sf M}\widetilde{\chi}_1^{\pm}$		
Scenario	(GeV/c ²)		(GeV/c ²)		
	expected	observed	expected	observed	
λ ₁₂₁ , μ > 0	105.0	101.5	191.9	185.3	
λ ₁₂₁ , μ < 0	101.1	97.7	192.2	185.6	
λ ₁₂₂ , μ > 0	107.7	110.4	197.5	202.7	
λ ₁₂₂ , μ < 0	102.7	106.3	195.3	201.9	

DØ Limits				
SUSY Scenario	$\begin{array}{c} M\widetilde{\chi}^0_1\\ (GeV/c^2)\end{array}$	$\begin{array}{c} M\widetilde{\chi}_{1}^{\scriptscriptstyle\pm}\\ (GeV/c^2) \end{array}$		
$λ_{122}, μ > 0$	118	229		
λ ₁₂₂ , μ < 0	115	230		
$λ_{121}, μ > 0$	119	231		
λ ₁₂₁ , μ < 0	117	234		