CMS ECAL Cosmic Calibration

Jason Haupt University Of Minnesota

On behalf of the CMS ECAL collaboration

PbWO4 Crystals

- Lead Tungstate Crystals
 - Moliére radius 2.2cm
 - Radiation Length 0.89cm
 - Scintillation decay time 80% at 35ns
 - Been shown to be radiation resistant
 - Low LY compared to other commonly used crystals (CsI BGO ...)
 - -1.9%/°C temp dependence
- Lead Tungstate Crystals in CMS (Barrel)
 - "Average size", 2.4x2.4cm² and 23cm in length
 - 34 Different crystal shapes
 - 25.8 X_o
 - 36 Supermodules make up the barrel calorimeter
 - Each Supermodule has 1700 crystals

ECAL Barrel Optical Readout UNIVERSITY OF MINNESOTA

≈ 4.5 photo-electrons/MeV122400 Total APD'sVery Linear Devices

Two 5x5 mm² APD's/crystal
Gain – 50
QE – 75% @ 420 nm
Temp sensitivity – -2.4%/°C

ECAL Inter-calibration Goals

- Energy Resolution $(\sigma_E/E)^2 = (a/\sqrt{E})^2 + (b/E)^2 + c^2$
- Goal : constant term "c" < 0.5% → $\sigma/E < 0.5$ % (For High Energies)
- In-situ Calibrations
 - □ $Z \rightarrow e^+e^- \sim 1$ day 1% (with ϕ ring inter-calibration)
 - $\Box \ W^{\pm} \rightarrow e^{\pm}v \ \sim 2 \text{ months E/p from Tracker}$
 - $\ \ \, \square \quad \pi^0 \to \gamma\gamma, \ \eta^0 \to \gamma\gamma, \ \text{etc.}$
- Initial inter–calibrations
 - □ LY ~4%
 - Cosmics ~2%
 - Test Beam ~0.3% (Not available for all SM's)
- Reason for pre–calibration
 - Uniform detector response at startup

CCMS power unit trade

Calibration Chain

- - Crystal optical response
 - APD Gain
 - Amplifier Gain
 - ADC 12bit Out

- Cross Checks
 - Test Pulse (after APD)
 - Compared to previous test pulses
 - Laser allows for self referencing
 - Compare one laser run to another

Laboratory Inter-Calibration

- Two current methods to LY measurements (Basically Quality Checks) automated
 - 1. Direct LY along crystal ⁶⁰Co
 - ~1.2 MeV source
 - 2. Transmission through crystals longitudinally at 360nm
- Combined Laboratory constants
 - Laboratory measurements are combined; LY, APD gain, the preamp.
 - Result of a ~4.0% agreement compared to testbeam calibration constants
 - Comparing ~1.2 MeV Source to 120 GeV testbeam!

CCMS under the second s

- Cosmic ray muons deposit ~11 MeV/cm in PbWO₄ crystals
- A through going muon will deposit ~250 MeV in a 23cm crystal
- APD gain was increased factor of 4 to get away from the ~38 MeV electronics noise. Actual gain ratio is found with laser. Also to improve the neighbor veto.
- 1 ADC count ~9 MeV
- Goal
 - Improve measurement for all 61,200 barrel crystals with full readout chain
 - □ Excellent way to run each SM ~10 days as a final "burn-in" step

Cosmic Muon Trigger

- The trigger is a coincidence of one of 6 plastic scintillator counters spread over the bottom of the Super-Module with another counter placed near the interaction point.
- Trigger is designed as to select muons that are throughgoing. In this situation the amount of deposited energy is most well determined.
- 85x20 iηxiφ grid
- One SM has more than 34 Million Triggers
- Most have 4-7 M
- 23 SM's have been calibrated with cosmics

Cosmic Trigger Setup

13

- E2 is the energy of the next highest crystal around the max
- **RED** marks selection

Crystal Selection

Crystal Selection

- E_A is the Energy of the Maximal crystal
- E_B is the energy of the next highest crystal around the max
- E3 refers to all other surrounding crystals
- Magenta marks selection

- Pulse-height distributions of the crystal of highest energy deposited (E1) are made for each crystal
- Pulse-height distributions are also generated from MC information.
 - 17 different η dependent MC energy distributions are created.
- The constant is then found by adjusting the pulse-height to MC with an unbinned maximum likelihood method.
 - Factor: Relative Scale = Calibration constant

$$\mathcal{L} = \prod_{i} pdf(c \cdot E_{i})$$

CCMS under the second standard

Two Crystal Method (Matrix Inversion)

- Energy = Sum of both crystals
- Define a χ²
- Minimize the χ^2 for each constant
- Fill Matrix event by event
- Invert
- Only Input is the mean of the MC distributions
- 17 Monte Carlo (MC) E1+E2 reference distributions are made
 - The mean is extracted from each within the selection range
- Reference distributions are created for special cases.
 - Module Borders
 - edges
 - η edges

OF MINNESOTA

$$\chi^2 = \sum_{Events} \frac{\left(E_{True} - \sum c_i E_i\right)^2}{\sigma_E^2}$$

$$R_j = \sum_{Events} \frac{E_{True} E_j}{\sigma_E^2} \qquad A_{ij} = \sum_{Events} \frac{E_i E_j}{\sigma_E^2}$$

$$R_j = \sum_i c_i A_{ij}$$
$$c = R \times A^{-1}$$

- 36 SM's
- 10 will have electron testbeam calibration
- Use the beam inter-calibration constants to build reference distributions for the cosmic data
- Use these cosmic reference distributions in place of MC
- Validate method by comparing inter-calibration constants obtained with test beam and with cosmics for different SM's.

$\Box \text{ Difference} \rightarrow \text{precision}$

 Then use cosmic ray data to obtain inter-calibration constants for remainder of SM's.

- ECAL setup employs full CMS geometry and electronics setup
- Using electron beam with energy of 120 GeV
- Preliminaries available for two supermodules
- Used SM16 to build references
- Validate them with SM18
- Combine the datasets according to the statistical uncertainties

$$C_{comb}{}^{i} = \frac{\frac{C_{Single}^{i}}{\sigma^{2}_{Single}(\eta)} + \frac{C_{i\eta}^{i}}{\sigma^{2}_{i\eta}(\eta)} + \frac{C_{i\varphi}^{i}}{\sigma^{2}_{i\varphi}(\eta)}}{\frac{1}{\sigma^{2}_{Single}(\eta)} + \frac{1}{\sigma^{2}_{i\eta}(\eta)} + \frac{1}{\sigma^{2}_{i\varphi}(\eta)}}$$

OF MINNESOTA

- Combined results with all beam calibrated SM's
 - Evaluate systematic uncertainties.
- Including beam data to check for differences between muons and electrons signals
- More than 23 SM's have collected cosmic data. All are now expected to collect cosmic data.
- SM installation starting soon

Conclusion

- 5 million triggers (10 days), provides a statistically accuracy of 2% or better
- Testbeam comparisons show an average agreement over an entire SM of less than 2%
- Cosmic ray muons will provide the most accurate inter-calibrations that will be available to all barrel crystals at CMS startup
- Using the ~250 MeV cosmic signal we can predict to 2% the calibration constants found at 120 GeV.
 - \rightarrow Uniform energy response between all crystals

- LY
 - L. M. Barone *et al.* "Correlation between Light Yield and Longitudinal Transmission in PbWO4 crystals and impact on the precision of the crystal intercalibration." CMS RN 2004-005 <u>http://cmsdoc.cern.ch/documents/04/rn04_005.pdf</u>
 - F. Cavallari *et al.* "Improvement on PbWO4 Crystal Intercalibration Precision from Light Yield Measurements at the INFN-ENEA Regional Center" CMS RN 2004-003 <u>http://cmsdoc.cern.ch/documents/04/rn04_003.pdf</u>
 - F. Cavallari *et al.* "Relative Light Yield comparison between laboratory and testbeam data for CMS ECAL PbWO4 crystals" CMS RN 2004-002 <u>http://cmsdoc.cern.ch/documents/04/rn04_002.pdf</u>
 - E. Auffray et al. "SPECIFICATIONS FOR LEAD TUNGSTATE CRYSTALS PREPRODUCTION" CMS Note 1998-038 <u>http://cmsdoc.cern.ch/documents/04/rn98_038.pdf</u>
- Cosmic
 - M. Bonesini *et al.* "Inter-calibration of the CMS electromagnetic calorimeter with cosmic rays before installation" CMS NOTE 2005/023
 - W. Bertl *et al.* "Feasibility of Intercalibration of CMS ECAL Supermodules with Cosmic Rays" CMS NOTE 2004/036
 - K. Deiters *et al.* "Test of the Feasibility of Pre-intercalibration of ECAL Supermodules with Cosmic Rays" CMS IN 2004/023
- General
 - CMS Collaboration, CMS Technical Proposal, CERN/LHCC 94-38
 - CMS Collaboration, *The Electromagnetic Calorimeter Project TDR*, CERN/LHCC 97-33
 - Particle Data Handbook and references therein

Extras

OF MINNESOTA

27

The reconstructed mass the the Higgs depends on the Energy of both photons as well as the

ECAL: Higgs $\rightarrow \gamma \gamma$

The error of the photon energy is very important

angle between the two.

Selection from MC

