Chiral Phase Transition
from String Theory D. Sahakyan

 $h.c.p. 11. / O6OL173$ $l_{v}ep-H_{v}/DE/0247$
(w/A. Parnachev)

DPF 2006 + JPS 2006

Thtroduction Over past few years
there has been considerate progress in Studying QCD like theories using ho lography. In this talk I will to discuss a particular mode^l for xSB

 $U(N_f) \times U(N_f) \rightarrow U(N_f)$

Outline

1. The model: The weak cov pling 2. Gravity description

3 Thermodynamics and
chiral symmetry restoration

4 Finite chemial potential

5 Photon Emission

 $-\downarrow$

Particle content: $4 - 8$ and $4 - 8$ strings Massless excitations are fermionic: $2, 4-8$) & $9, 14 - 8)$

 $-$ / $-$

 $-3-$

Gravity description

 $dS_{4}^{2} = (\frac{u}{R})^{3/2} [\eta_{\mu\nu} dx^{\mu} dx^{\nu} + (dX^{\mu})^{2}]$

 $+\left(\frac{R}{u}\right)^{3/2}\left[du^{2} + u^{2}d\Omega_{y}^{2}\right]$

 $e^{\frac{4}{3}} = 1 \int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{\sqrt{2}} e^{i\frac{\pi}{6}}$ $R^3 = \pi \sqrt{12}$

D8 & D8 are probes in
this geometry

the DBI action for $\overline{D8}$; $U = U(x^{4})$ D8 - $S_{DS} \sim \int dx^{4} u^{4} \sqrt{1 + (\frac{R}{a})^{3} u^{2}}$ $(\tau \equiv x^4)$ The E.C
 $\frac{u^4}{\sqrt{1+(\frac{p}{2})^3}}$ O.M. 2 types of solutions

Gravity description:
The near horizon geom: $ds^{2} = (\frac{u}{R})^{3/2} (f(u) dt^{2} + dXtdx^{2} + (dx^{4})^{2}) +$ $\left(\frac{R}{2d}\right)^{3/2}\left(\frac{du^{2}}{d(u)} + u^{2} d\mathcal{Z}_{4}^{2}\right)$ $\mathbb{E} = 95(\frac{u}{R})^{7/4}$ $\mathbb{P}(u) = 1 - \frac{u}{u^3}$

Hete j th = $(4\pi)^{2}R^{3}$ R^3 = π gs μ 6 = π λ + 2 + + 1

 $-4-$

The DBI action for D8-D8
 $\tau(u) = x^4(u)$ $S = \int d^{3}x \int d\alpha \ y^{5/2} \sqrt{1 + (w^{3}f(\alpha))\alpha_{i}z^{2}}$ $E. O. M.$ $\frac{d}{du} \left[\frac{\delta S}{\delta L} \right] = 0$ $\frac{d}{du}\left[\frac{\left(\frac{u}{R}\right)^{\frac{11}{2}}ku\right)\partial_{u}\tau}{\sqrt{1+\left(\frac{u}{R}\right)^{3}}(u)\left(\partial_{u}\tau\right)^{2}}\right]$ $= 0$

Figure 1: $L/2$ in the units of $3/4\pi T$ as a function of U/U_T .

 $\overline{\mathbf{r}}$

Two solutions of second type (fixed \angle and \top) $U =$ For $T > T_{*} = .17L^{-1}$ there no curved solution is

Thermodynamics of (xSB). Solution with lowest
free energy is preflered

 $4(F_{st} - F_{curv}) = S_{st} - S_{curv} \sim$ $\int d u \, u^{4} (\frac{R}{u})^{3/2} +$ + $\int_{u_{0}}^{u_{1}} du u \left(\frac{R}{u}\right)^{3/2} \left[1 - \sqrt{1 + \frac{4(u_{0})u_{0}^{2}}{4(u)u^{3} - 4(u_{0})u_{0}^{3}}}\right]$

Figure 2: $(1/T)(\mathcal{F}_{cur} - \mathcal{F}_{st})$ as function of U_0/U_T .

The phase transition is of happens L T T_c . IS t^{-1} T_{ξ} (S_{μ} - $S_{\mu\nu}$) = 03 $\pi^{5}\mu$ C_{l} \mathcal{L} .

The finite chemical

Chemical potential μ z turning on imaginary Ao The action:
 $5 \times \int dU \ u^{s/2} \sqrt{1 + 4\pi F_{oa}^2 + (\frac{2}{R})^2 f \cdot z^2}$ The thermal exp. value for
charge : $\int e^{iT} \frac{\delta S}{\delta A_0^{\alpha J}(\infty)} \Big|_{\epsilon on} e^{iT} \lim_{u \to \infty} \frac{\delta S}{\delta A_0^{'}(u)}$

 $E. O. M.$ $\frac{d}{du}$ $\left[\frac{2\pi u^{5/2} A_{0}^{1/6}}{\sqrt{1-(2\pi A_{0}^{1})^{2}+(\frac{u}{R})^{2}f(u)U^{2}}}\right]$ = a $du = \frac{u^{n/2}f(u)}{\sqrt{1-(2\pi h^{n})^{2}+(h^{2})^{2}f(u)^{2}}}=2$ A¹¹⁰⁾ is a monotonic function so for the phase w/no chiral symmetry, there are not non trivial solutions

Unbroken phase

 $E. O. M.$ $2\pi u$ s/2 A_0' $\sqrt{1-4\pi^{2}A_{0}}$

 $\mu = A_{0}(x) - A_{0}(x +)$, $A_{0}(x +)$

 $\mu = \frac{1}{2\pi} \int_{\frac{du}{2}} du \sqrt{\frac{c^2}{c^2 + u^2}}$ $\frac{2^{15}}{2\pi}\left[\frac{1(3)}{\sqrt{\pi}}\right]^{-1}\left(\frac{6}{2}\right)$ - $\frac{11}{c^{2}/s}$ $2\pi\left(\frac{1}{s},\frac{1}{s}\right)$ $\frac{6}{s}$ - $\frac{245}{c^{2}}\right]$

Asymptotics: $3 \approx \frac{1}{3\sqrt{2\pi}} \left(\frac{r(\frac{2}{10})r(\frac{6}{2})}{\sqrt{2}} \right)^{-5/2}$ 16 $\lambda^{\frac{1}{2}} \mu^{5/2}$ $\mu > 2\pi$

 $3 \approx 16 \left[\frac{\bar{11}}{9} (37) T^2 \mu + \frac{13}{917^2} \frac{1^2}{21^2} \right]$ $\mu \ll (\mathcal{a}T)T$ Free fermion gas: $\mathcal{C}_{\Gamma.}$

 $\int \text{free}$ = $\frac{N_c}{67^2} \left[\mu T^2 T^2 + \mu^3 \right]$

CONCIUSIONS

We discussed xSB phase transition \div Found T_c = $.15L^{-1}$ $\frac{1}{2}$ Showed that for $T>I_{\text{rel}}$ the phase with broken symmet.

does not exist

 \le Showed that the transition
is of 1^{st} order and computed the latent heat \star Discussed finite μ .

 $-11-$