

Tau Neutrino Appearance in Atmospheric Neutrinos

Tokufumi Kato Stony Brook University for the Super-Kamiokande Collaboration

$\begin{array}{c} \underline{\mbox{Motivation:}} \ v_{\mu} \leftrightarrow v_{\tau} \ \mbox{oscillation scenario of} \\ atmospheric neutrinos well-established via \\ v_{\mu} \ \mbox{disappearance} \ (See \ Okumura's \ talk). \\ However, no \ \mbox{direct evidence for} \\ v_{\tau} \ \mbox{appearance} \ \mbox{observed yet. Look for tau} \\ leptons \ \mbox{produced in } v_{\tau} \ \mbox{CC interactions in} \\ \ \mbox{Super-Kamiokande detector.} \end{array}$

■ 78 v_{τ} CC events expected in SK-I (1489.2 days) for $\Delta m^2 = 2.4 \times 10^{-3} eV^2$ with maximal mixing.

Search for v_{τ} Appearance

Signal/Noise: ~ 0.7%

 v_{τ}

W

- Signal events: v_{τ}
 - = Energy threshold for v_{τ} to produce τ : 3.5 GeV.

Signature of Tau events

- Many Pions (high multiplicity).
- More isotropic events than BKGs.
- Background events: ν_e , ν_μ
 - DIS events with pions.
 - Lower multiplicity.

 π_{s}

q

e

~18% ~18%

W

Tau event in Super-K

Oct. 31, 2006

Tau Polarization

1.5

 $v_{\tau} + \mathbf{N} \rightarrow \tau^{-} + \mathbf{X}$

E_v=10GeV

- The distributions of decay particles from tau leptons depend on the spin.
- $p_r sin\theta$ (GeV) In our Tau MC, the polarization of tau leptons is implemented, based on the calculations by Hagiwara et. al.

Hagiwara et.al: Nucl. Phys. B668, 364-384 (hep-ph/0305324)

 $\theta = 10^{\circ}$

P=1

- Tau neutrino event selection criteria:
 - Fiducial Volume: 2m from the ID PMTs (Fully-Contained)
 - Visible Energy (Evis) > 1.33 GeV (Multi-GeV)
 - Most energetic ring is electron-like. (Showering events)

These 3 cuts reject approximately 90% of the backgrounds.

Likelihood + Neural Network

Oct. 31, 2006

Likelihood Analysis

Oct. 31, 2006

Oct. 31, 2006

Event Summary

	Data	BKG MC	Tau MC
Generated in fiducial volume	-	17135 (100%)	78.4 (100%)
Evis > 1.33 GeV	2888	2943 (17.2%)	51.5 (65.7%)
Most Energetic ring e-like	1803	1765 (10.3%)	47.1 (60.1%)
Likelihood > 0.0	649	647 (3.79%)	33.8 (43.1%)
Neural network > 0.5	603	577 (3.36%)	30.6 (39.0%)

After all of tau neutrino event selection cuts and the likelihood cut (neural network cut): Backgrounds: 96% (97%) rejected Signals: 43% (39%) survived

Fit to Distribution: $N_{total}(cos(\theta)) = \alpha N_{TAU} + \beta N_{BKG}$

- **Tau Normalization** (α) = 1.76
- **Bkg Normalization** (β) = 0.90
- $\chi^2/DOF = 7.6/8$ ($\chi^2/DOF = 16.3/9$ assuming no tau appearance)

Result:

- Fitted τ excess: 59.6 ± 20.7
- Total τ excess: 138 ± 48(stat.) (signal efficiency: 43.1%)

Oct. 31, 2006

Fit to Distribution: $N_{total}(cos(\theta)) = \alpha N_{TAU} + \beta N_{BKG}$

- **Tau Normalization** (α) = 1.71
- Bkg Normalization (β) = 0.99
- χ^2 /DOF = 9.8/8 $(\chi^2/\text{DOF} = 18.2/9 \text{ assuming})$ no tau appearance)

Result:

- Fitted τ excess: 52.3 ± 18.7
- Total τ excess: 134 ± 48(stat.) (signal efficiency: 39.0%)

Oct. 31, 2006

- Sys. Error: Expected # of Tau:
 - SK atm v osc. analysis (23 terms): standard uncertainties
 - Tau related: cross section, polarization, tau likelihood eff. etc.
- Sys. Error: Observed (fitted) # of Tau:
 - Up/Down asymmetry (Flux:Up/Down, Horizontal/Vertical etc.)
 - **Oscillation parameters:** Δm^2 , $sin^2 2\theta_{23}$, $sin^2 2\theta_{13}$

Systematic Uncertainty	Likelihood	Neural Network
Expected # of Tau	± 32.6%	± 34.4%
Observed # of Tau	+10.7% / -22.9%	+12.0% / -20.3%

Systematic uncertainty

	Systematic uncertainties for expected tau	LH (%)	NN (%)
r	Super-K atmospheric v oscillation analysis	21.6	20.2
Errors on	(23 error terms)		
the expected	Tau related:		
ine expected	Tau neutrino cross section	25.0	25.0
# of taus.	Tau lepton polarization	7.2	11.8
	Tau neutrino selection efficiency	0.4	0.5
	LH selection efficiency	4.8	-
	NN selection efficiency	-	3.0
	Total:	32.6	34.4
	Systematic uncertainties for observed tau	LH (%)	NN (%)
	Super-K atmospheric v oscillation analysis:		
_	Flux up/down ratio	6.5	5.7
Errors on	Flux horizontal/vertical ratio	3.6	3.2
the obconved	Flux K/ π ratio	2.4	2.8
The ubserved	NC/CC ratio	4.3	3.8
# of taus.	Up/down asym. from energy calib.	1.4	< 0.1
•	Oscillation parameters:		
	$0.0020 < \Delta m^2 < 0.0027 \text{ eV}^2$	+5.8/-2.6	+8.8/-3.3
	$0.93 < \sin^2 2\theta_{23} < 1.00$	-3.3	-3.9
	$0.00 < \sin^2 2\theta_{13} < 0.15$	-20.6	-17.9
	Total:	+10.7/-22.9	+12.0/-20.3

Oct. 31, 2006

- Likelihood analysis:
 - Observed v_τ excess: 138 ± 48(stat.) + (+14.8/-31.6)(sys.)
 - Expected v_{τ} excess: 78.4 ± 26(sys.)
- Neural Net analysis:
 - Observed v_τ excess: 134 ± 48(stat.) + (+16/-27.2)(sys.)
 - Expected v_{τ} excess: 78.4 ± 27(sys.)

Super-Kamiokande observed v_{τ} excess events consistent with expected number of v_{τ} events. This disfavors the no tau appearance hypothesis with a significance of 2.4 σ .

- v_{τ} appearance search in Super-K finds that SK-I data are consistent with the expectation from neutrino oscillations with a significance of 2.4 σ .
- Paper has been recently published in Physical Review Letters: Vol 97 Issue 17, Page 171801.

Happy Halloween!!!

Oct. 31, 2006

Supplement

Oct. 31, 2006

Energy Flow Analysis

- Energy flow is deconvolved with Cherenkov patterns observed.
- Energy Flow in each direction is assigned to a "pseudo-particle" and jets are reconstructed.
- Using "jets", the event shape variable, i.e.
 sphericity is obtained.

Describes isotropy of energy flow

 Measure of the summed p²_T wrt. Sphericity axis

$$S = \frac{3}{2} (\lambda_2 + \lambda_3)$$
$$S^{\alpha \beta} = \frac{\sum_{i} p_i^{\alpha} p_i^{\beta}}{\sum_{i} |\vec{p}_i|^2}$$
$$0 \le S \le 1$$

IDEP

The consistency of the two analyses is also checked and 83% of the selected tau-like events are in common.