# Measurement of cos2β at *BABAR* Resolving Ambiguity from sin2β

Chih-hsiang Cheng California Institute of Technology on behalf of the BABAR Collaboration DPF2006+JPS2006, Honolulu Hawaii, Oct 30—Nov 3

# **CKM** Physics

• CKM matrix describes weak couplings in quarks

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix} \qquad u_i = \underbrace{V_{ij}}_{V_{ij}} d_j$$

 Primary goal of the B-factories is to measure these parameters (magnitudes and phases) in as many ways as possible, over constraining the Standard Model parameter space.



contain phases of order 1.

#### **Time-Dependent Measurement**

- Y(4S) decays to  $B^0\overline{B}^0$  coherently.
- Center-of-mass boosted  $\beta\gamma=0.56$ , separating two B vertices.



• Interference between decay and decay via mixing resulting in CP asymmetry.

$$\mathcal{A}_{CP} = \frac{\Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP}) - \Gamma(B_{phys}^{0}(t) \to f_{CP})}{\Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP}) + \Gamma(B_{phys}^{0}(t) \to f_{CP})} = \mathcal{S} \cdot \sin(\Delta m_{d}t) - \mathcal{C} \cdot \cos(\Delta m_{d}t)$$
$$\mathcal{S} = 2\eta_{f} \frac{\mathrm{Im}(\lambda)}{1 + |\lambda|^{2}} \qquad \lambda = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} \quad ; \qquad \mathcal{S} = \eta_{f} \sin 2\beta \quad \text{if} \quad \frac{\overline{A}_{f}}{A_{f}} \quad \text{has no non-trivial phase.}$$

# Ambiguity in $\beta$

- sin2β has been measured pretty precisely using charmonium-K<sup>0</sup> decays.
- Four-fold ambiguity in  $\beta$ .
- Solution β=21° (+180°) is consistent with other constraints in SM, but there is room for new phase in mixing so that it might not be the right solution.



- Measuring (the sign of)  $\cos 2\beta$  can resolve the ambiguity.
- Idea: Use the decay modes that have more than one amplitude contributing with different strong phases and the strong phase difference can either be measured or calculated.

# Resolving Ambiguity in $2\beta$ at BABAR

- First attempt:  $B^0/\overline{B}^0 \to J/\psi K^{*0}$  : use angular analysis to resolve  $|A_0|e^{\delta_0} |A_{\parallel}|e^{\delta_{\parallel}} |A_{\perp}|e^{\delta_{\perp}}$  amplitudes and use P-wave/S-wave interference in K $\pi$  to resolve strong phase ambiguity.
  - [PRD 71, 032005] (not in this talk)
- Time-dependent Dalitz analysis in  $B^0/\overline{B}^0 \to D^{(*)0}/\overline{D}^{(*)0}h^0$  with  $D^0 \to K_S^0 \pi^+ \pi^-$  ( $\Rightarrow$  this talk).
- Time-dependent analysis in  $B^0/\overline{B}^0 \to D^{*+}D^{*-}K_S^0$  in partial phase space ( $\Rightarrow$  this talk).
- Time-dependent Dalitz analysis in  $B^0/\overline{B}^0 \to K^+K^-K^0$ 
  - See Denis Dujmic's talk later today.

## Color-Suppressed $B \rightarrow D^{(*)0}h^0$ Decays



 $D^{0}/\overline{D}^{0} \to K_{S}^{0}\pi^{+}\pi^{-} \text{ to reach a common final state.}$ •  $\mathcal{P}_{\pm} = \frac{1}{2}e^{-\Gamma t}|A|^{2} \cdot \left[ (|A_{\overline{D}}|^{2} + |A_{D}|^{2}) \mp (|A_{\overline{D}}|^{2} - |A_{D}|^{2})\cos(\Delta m t) \pm 2\eta_{h^{0}}(-1)^{L}\mathrm{Im}\left(e^{-2i\beta}A_{D}A_{\overline{D}}^{*}\right)\sin(\Delta m t)\right]$  $\mathrm{Im}\left(e^{-2i\beta}A_{D}A_{\overline{D}}^{*}\right) = \underline{\mathrm{Im}}(A_{D}A_{\overline{D}}^{*})\cos 2\beta - \mathrm{Re}(A_{D}A_{\overline{D}}^{*})\sin 2\beta$ 

- Strong phases in D<sup>0</sup> and D
  <sup>0</sup> amplitudes are different at a given point on the Dalitz plot => Im(A<sub>D</sub>A<sup>\*</sup><sub>D</sub>) ≠ 0
- Need to model  $D^0/\overline{D}^0 \to K_S^0 \pi^+ \pi^-$  amplitudes.

### Dalitz Plot Model

• Isobar model

$$A_D(m_+^2, m_-^2) = \sum_r a_r e^{i\phi_r} A_r(m_+^2, m_-^2) + a_{\rm NR} e^{i\phi_{\rm NR}}$$

• Parameters determined from a large  $D^* \rightarrow D^0 \pi$  sample.

| Resonance         | Amplitude           | Phase $(deg)$   | Fit fraction |
|-------------------|---------------------|-----------------|--------------|
| $K^{*}(892)^{-}$  | $1.781\pm0.018$     | $131.0\pm0.8$   | 0.586        |
| $K_0^*(1430)^-$   | $2.45\pm0.08$       | $-8.3\pm2.5$    | 0.083        |
| $K_2^*(1430)^-$   | $1.05\pm0.06$       | $-54.3 \pm 2.6$ | 0.027        |
| $K^{*}(1410)^{-}$ | $0.52\pm0.09$       | $154 \pm 20$    | 0.004        |
| $K^{*}(1680)^{-}$ | $0.89 \pm 0.30$     | $-139 \pm 14$   | 0.003        |
| $K^{*}(892)^{+}$  | $0.180 \pm 0.008$   | $-44.1 \pm 2.5$ | 0.006        |
| $K_0^*(1430)^+$   | $0.37\pm0.07$       | $18 \pm 9$      | 0.002        |
| $K_2^*(1430)^+$   | $0.075\pm0.038$     | $-104 \pm 23$   | 0.000        |
| $\rho(770)$       | 1 (fixed)           | 0 (fixed)       | 0.224        |
| $\omega(782)$     | $0.0391 \pm 0.0016$ | $115.3\pm2.5$   | 0.006        |
| $f_0(980)$        | $0.482 \pm 0.012$   | $-141.8\pm2.2$  | 0.061        |
| $f_0(1370)$       | $2.25\pm0.30$       | $113.2\pm3.7$   | 0.032        |
| $f_2(1270)$       | $0.922 \pm 0.041$   | $-21.3 \pm 3.1$ | 0.030        |
| ho(1450)          | $0.52\pm0.09$       | $38 \pm 13$     | 0.002        |
| $\sigma$          | $1.36\pm0.05$       | $-177.9\pm2.7$  | 0.093        |
| $\sigma'$         | $0.340 \pm 0.026$   | $153.0\pm3.8$   | 0.013        |
| Non Resonant      | $3.53 \pm 0.44$     | $128 \pm 6$     | 0.073        |



[PRL 95, 121802 (2005)]

### $B \rightarrow D^{(*)0}h^0$ Modes

- Used modes:  $D^0\pi^0$ ,  $D^0\eta$ ,  $D^0\eta'$ ,  $D^0\omega$ ,  $D^{*0}\pi^0$ ,  $D^{*0}\eta$   $\eta \to \gamma\gamma \qquad \eta \to \gamma\gamma$ ,  $\pi^+\pi^-\pi^0 \qquad \eta' \to \pi^+\pi^-\eta \qquad \omega \to \pi^+\pi^-\pi^0$  $D^{*0} \to D^0\pi^0$
- Use a Fisher discriminate to reduce the major background, continuum event (thrust angle, Legendre polynomial, B flight angle, event thrust, sphericity. Also exploit ω decay angles)





• Cut  $|\Delta E| < 80$  MeV for  $h^0 \rightarrow \gamma \gamma$  modes,  $|\Delta E| < 40$  MeV for  $h^0 \rightarrow \pi \pi \pi^0$  modes.

# Event Yield

- Fit to  $m_{ES}$ ,  $m_{D0}$ ,  $\Delta t$  and Dalitz variables simultaneously.
- (m<sub>ES</sub>, m<sub>D0</sub>) discriminate peak and background with/without a real D<sup>0</sup>.
- Fake D<sup>0</sup> Dalitz distribution modeled empirically from sideband.
- Peaking background determined from simulation.
- Data=  $311 \text{ M B}\overline{\text{B}}$  pairs.

signal=  $384\pm 28$  events





g

#### Dalitz Distribution



Chih-hsiang Cheng, Caltech

# **Preliminary Results**

- Fit for  $\cos 2\beta$ ,  $\sin 2\beta$  and  $|\lambda|$ :  $\cos 2\beta = 0.54 \pm 0.54 \pm 0.08 \pm 0.18$  $\sin 2\beta = 0.45 \pm 0.35 \pm 0.05 \pm 0.07$ 
  - $|\lambda| = 0.975^{+0.093}_{-0.085} \pm 0.012 \pm 0.002$
- Fix sin2 $\beta$  at world average and  $|\lambda|=1$ :

 $\cos 2\beta = 0.55 \pm 0.52 \pm 0.08 \pm 0.18$ 

• Largest systematic error from Dalitz model.

Generate toys with  $\sin 2\beta = \sin 2\beta_{WA}$ , and  $\cos 2\beta = \pm (1 - \sin^2 2\beta)^{\frac{1}{2}}$ ; compare fit distributions and data fit result:

 $\cos 2\beta = +(1-\sin^2 2\beta)^{\frac{1}{2}}$  is favored at 87% C.L.



Dalitz model uncertainty

# $B \rightarrow D^{*+}D^{*-}K^0$ Decays

W

W

 $B^0$ 

 $B^0$ 

- Tree-dominated process. If ignoring penguin, asymmetry amplitude =  $\mathcal{D} \sin 2\beta$ .
  - $\mathcal{D}$  is dilution due to possible resonances of different  $J^{P}$  and non-resonance.
- Again, there is a varying strong phase over the DDK Dalitz plot. Integrate half of the Dalitz plot: (we don't know the detail of Dalitz model)

Chih-hsiang Cheng, Caltech

 $K^0$ 

 $D^{*+}$ 

 $D^{*-}$ 

 $D^{*+}$ 

 $K^0$ 

#### **Branching Fraction Results**

• Modes:  $D^{*+} \rightarrow D^0 \pi^+$ ,  $D^+ \pi^0$ ;  $D^0 \rightarrow K^- \pi^+$ ,  $K^- \pi^+ \pi^0$ ,  $K^- \pi^+ \pi^- \pi^+$ ;  $D^+ \rightarrow K^- \pi^+ \pi^+$ .



 $\mathcal{B}(B^0 \to D^{*+} D^{*-} K_S^0) = (4.4 \pm 0.4 \pm 0.7) \times 10^{-3}$ 

 $\mathcal{B}(B^0 \to D^{*-}D^+_{s1}(2536)) \times \mathcal{B}(D^+_{s1}(2536) \to D^{*+}K^0_S) = (4.1 \pm 1.3 \pm 0.6) \times 10^{-4}$ 4.6 $\sigma$  significance

#### **Time-Dependent Results**

$$\frac{J_c}{J_0} = 0.76 \pm 0.18(\text{stat}) \pm 0.07(\text{syst})$$
$$\frac{2J_{s1}}{J_0} \sin 2\beta = 0.10 \pm 0.24(\text{stat}) \pm 0.06(\text{syst})$$
$$\frac{2J_{s2}}{J_0} \cos 2\beta = 0.38 \pm 0.24(\text{stat}) \pm 0.05(\text{syst})$$

- Large  $J_c/J_0 =>$  sizable broad  $D_{s1}^+$
- [PRD 61, 054009 (2000)] predicts  $J_{s2}>0$  (factorization+heavy hadron chiral perturbation theory)
- Our data show  $J_{s2}\cos 2\beta > 0$  at 94% confidence level.



# Conclusions

- BABAR has measured (the sign of) cos2β using D<sup>(\*)0</sup>h<sup>0</sup> (D<sup>0</sup>→K<sub>s</sub>π<sup>+</sup>π<sup>-</sup>) and D<sup>\*+</sup>D<sup>\*-</sup>K<sub>s</sub> decays. The sign is determined to be positive at 87% and 94% confidence level.
- See another  $\cos 2\beta$  measurement using  $B^0 \rightarrow K^+K^-K^0$  decays in D. Dujmic's talk later today.
- Combining these results and Belle's result, β=69° (+180°) is excluded at a very high confidence level. Standard Model is still intact.