On the concavity of a-functions

Akishi KATO (Math. Sci., Univ. Tokyo)

October 31, 2006, Hawaii The Joint Meeting of Pacific Region Particle Physics Communities

ref. hep-th/0610266 Zonotopes and four-dimensional superconformal field theories To understand the universality classes and RG flows of four dimensional QFTs a la

Theorem. [Zamoldchikov 1986] There exists a real-valued function $c : \mathcal{M}_{2dCFT} \longrightarrow \mathbb{R}$ such that the RG flow is a gradient line of *c*-function: $\beta^i(g) = -G(g)^{ij} \frac{\partial c(g)}{\partial g^j}$. The critical value of *c* is the Virasoro central charge of the corresponding CFT.

Toward a proof of AdS/CFT correspondence or gauge/gravity duality

4d Superconformal Field Theories and $U(1)_R$

- ► Global symmetry contains $SU(2,2|1) \supset SO(4,2) \times U(1)_R$
- ► Scaling dimension of chiral operators are protected from quantum corrections: $\Delta(\mathcal{O}) = \frac{3}{2}R(\mathcal{O}).$
- ► Conjecture : *a*-function defined by $a = \frac{3}{32} (3 \operatorname{tr} R^3 \operatorname{tr} R)$ decreases along RG flow: $a_{UV} > a_{IR}$.
- ▶ $U(1)_R$ is thus extremely useful provided that it can be correctly identified. In general, however, abelian part of non-R global flavor symmetry G can mix with $U(1)_R$.

a-maximization

Theorem. [Intriligator-Wecht 2003]

Exact $U(1)_R$ charges maximize a: Among all possible combination of abelian currents

$$R_{\phi} = R_0 + \sum_{i=1}^n \phi^i F_i,$$

the correct $U(1)_R$ current is given by the ϕ which attains the maximum of the "trial" *a*-function

$$a(\phi) = \frac{3}{32} \left(3\operatorname{tr} R_{\phi}^3 - \operatorname{tr} R_{\phi} \right).$$

a-functions from toric diagrams

For a toric diagram P with vertices v_1, \dots, v_n , the a function of the corresponding quiver gauge theory is given by

$$a(\phi) = \frac{9}{32} \frac{N^2}{2} \sum_{i,j,k=1}^n c_{ijk} \phi^i \phi^j \phi^k, \qquad c_{ijk} = |\det(\boldsymbol{v}_i, \boldsymbol{v}_j, \boldsymbol{v}_k)|,$$

C(P)

where
$$\phi^1 + \dots + \phi^n = 2, \phi^i > 0.$$

P

P

Hanany-Iqbal, Benvenuti-Franco-Hanany-Martelli-Sparks, Butti-Zaffaroni, Franco-Hanany-Kennaway-Vegh-Wecht, Benvenuti-Kruczenski, ...

Benvenuti-Zayas-Tachikawa, Lee-Rey

Basic Questions

- ► Does *a*-maximization always have a solution?
- ► Is it unique? No saddle points?
- Do non-extremal points in toric diagrams play their role in amaximization?
- How does the change of toric diagrams influence the maxima of trial *a*-functions? Does *a*-function decrease whenever a toric diagram shrinks?
- Don't want to build conjectures upon other conjectures.... Can we answer these questions without assuming AdS/CFT correspondence?

Mathematical Setup

▶ Input data : a toric diagram P with vertices v_1, \cdots, v_n .

▶ The trial *a*-function
$$\hat{F}_P : \mathbb{R}^n \to \mathbb{R}$$
,

$$\hat{F}_P(\phi) = \sum_{1 \le i < j < k \le n} |\det(\boldsymbol{v}_i, \boldsymbol{v}_j, \boldsymbol{v}_k)| \phi^i \phi^j \phi^k.$$

• Physical range of *R*-charges

$$\Gamma_n := \{ (\phi^1, \cdots, \phi^n) \in \mathbb{R}^n : \phi^i \ge 0, \sum_{i=1}^n \phi^i = r \} \subset \mathbb{R}^n.$$

Extremize the function $F_P: \Gamma_n \to \mathbb{R}$.

▶ Modulus := normalized maximum value of *a*-function

$$\mathfrak{M}(P) := \left(\frac{3}{r}\right)^3 \max_{\phi \in \Gamma_n} \hat{F}_P(\phi).$$

Existence and Uniqueness

Let P be a toric diagram with vertices v_1, \dots, v_n . Then the function $F_P : \Gamma_n \to \mathbb{R}$ has a unique critical point ϕ_* in the relative interior of Γ_n and ϕ_* is also the unique global maximum of F_P .

Universal Upper Bound

The critical point ϕ_* satisfies the universal bound $0 < \phi_*^i \le r/3$ for all *i*. The equality $\phi_*^i = r/3$ holds for some *i* if and only if n = 3.

Monotonicity

The maximum value $\mathfrak{M}(P)$ depends on P only through its convex hull. $\mathfrak{M}(P)$ is monotone in the sense that if $P \subset P'$ up to integral affine transformations $G := GL(2, \mathbb{Z}) \ltimes \mathbb{Z}^2$, then $\mathfrak{M}(P) \leq \mathfrak{M}(P')$. The equality holds if and only if P = P' up to G-action.

Polytopes and Minkowski sums

► Convex hull of
$$S \subset \mathbb{R}^d$$

 $\operatorname{conv}(S) := \{\lambda x + (1 - \lambda)y \in \mathbb{R}^d : x, y \in S, 0 \le \lambda \le 1\}.$

► Minkowski sum of
$$A, B \subset \mathbb{R}^d$$

 $A + B := \{ \mathbf{x} + \mathbf{y} : \mathbf{x} \in A, \mathbf{y} \in B \}.$

▶ Dilatation
$$rA := \{rx : x \in A\}.$$

Zonotopes

For a vector configuration $X = \{x_1, \cdots, x_n\} \subset \mathbb{R}^d$, the zonotope is given by

$$\mathcal{Z}(X) = \{ \boldsymbol{x} \in \mathbb{R}^d : \boldsymbol{x} = \lambda_1 \boldsymbol{x}_1 + \dots + \lambda_n \boldsymbol{x}_n, \ 0 \le \lambda_i \le 1 \}$$

Theorem. [Shephard, McMullen]

$$\operatorname{vol}_d(\mathcal{Z}(X)) = \sum_{1 \le i_1 < \cdots < i_d \le n} |\det(\boldsymbol{x}_{i_1}, \cdots, \boldsymbol{x}_{i_d})|.$$

Corollary. *a*-function is proportional to the volume of a zonotope:

$$\hat{F}_P(\phi) \propto \operatorname{vol}_3(\mathcal{Z}_P(\phi)),$$

 $\mathcal{Z}_P(\phi) := \mathcal{Z}(\phi^1 \boldsymbol{v}_1, \phi^2 \boldsymbol{v}_2, \cdots, \phi^n \boldsymbol{v}_n)$

Zonotope

generators

zone

Brunn-Minkowski inequality

Theorem. $(\operatorname{vol}_d(-))^{1/d}$ is concave on the set of d-dimensional bodies. Namely, if $0 \le \lambda \le 1$ and $A, B \subset \mathbb{R}^d$ are convex bodies, then

$$\left(\operatorname{vol}_d((1-\lambda)A + \lambda B)\right)^{1/d} \ge (1-\lambda)\left(\operatorname{vol}_d(A)\right)^{1/d} + \lambda\left(\operatorname{vol}_d(B)\right)^{1/d}.$$

Equality \iff A and B are homothetic

Corollary. $(F_P)^{1/3}: \Gamma_n \to \mathbb{R}$ is strictly concave.

Concavity + existence of critical point \implies uniqueness & global maximum

Changing Toric Diagrams

Proposition. Suppose toric diagrams P, Q are related as follows:

Then, $\max_{\phi \in \Gamma_{n-1}} F_Q(\phi) < \max_{\psi \in \Gamma_n} F_P(\psi).$

 $F_P: \Gamma_n \to \mathbb{R}$ cannot attain its maximum on the boundary $\partial \Gamma_n$ + continuity + strict concavity of $(F_P)^{1/3}$

- \implies Existence & uniqueness of local maximum
- \implies Monotinicity of $\mathfrak{M}(P)$.

RG flow

Bounds on critical points

Proposition. If $\phi_* \in \Gamma_n$ is the critical point of F_P , then

$$\phi_*^p = \frac{r}{3} \cdot \frac{\operatorname{vol}(\mathcal{Z}_P^{[p]}(\phi))}{\operatorname{vol}(\mathcal{Z}_P(\phi))}, \qquad (p = 1, \dots, n).$$

where $\mathcal{Z}_{P}^{[p]}(\phi)$ denotes the union of those cubes which has at least one face belonging to *p*-th zone.

Baryonic & flavor symmetry

Maximization in two steps

$$\begin{array}{cccc} \mathbb{R}^n_{\geq 0} \xrightarrow{\pi_P} C(P) \longrightarrow \mathbb{R} \\ \cup & \cup & \cup \\ \Gamma_n \xrightarrow{\pi_P} rP & \longrightarrow \{r\} \end{array} & \boldsymbol{b} = \pi_P(\phi) = \sum_{i=1}^n \phi^i \boldsymbol{v}_i \end{array}$$

$$\max_{\phi \in \mathbb{R}^n_{\geq 0}} F(\phi) = \max_{\boldsymbol{b} \in C(P)} \left(\max_{\phi \in \pi^{-1}(\boldsymbol{b})} F(\phi) \right).$$

 $\pi_P^{-1}(\pmb{b})$

Relation with volume minimization

Theorem. Suppose $b \in rP$ i.e. b = (*, *, r). Then

- \hat{F}_P is a quadratic polynomial along the fiber $\pi_P^{-1}(\boldsymbol{b})$.
- In each fiber, there is a unique critical & maximum point $\sigma_P(\mathbf{b})$, determined by $\sigma_P^i(\mathbf{b}) = \frac{r}{V_P(\mathbf{b})} \ell_P^i(\mathbf{b})$. Here,

$$\ell_P^i(\boldsymbol{b}) := rac{\langle \boldsymbol{v}_{i-1}, \boldsymbol{v}_i, \boldsymbol{v}_{i+1}
angle}{\langle \boldsymbol{b}, \boldsymbol{v}_{i-1}, \boldsymbol{v}_i
angle \langle \boldsymbol{b}, \boldsymbol{v}_i, \boldsymbol{v}_{i+1}
angle} \propto \operatorname{vol}(\textit{calibrated 3-cycle})$$
 $V_P(\boldsymbol{b}) := \sum_{i=1}^n \ell_P^i(\boldsymbol{b}) \qquad \propto \operatorname{vol}(\textit{Sasaki-Einstein mfd.})$

•
$$\max_{\phi \in \pi_P^{-1}(\boldsymbol{b})} \hat{F}_P(\phi) = \hat{F}_P(\sigma_P(\boldsymbol{b})) = \frac{r}{V_P(\boldsymbol{b})}.$$

Martelli-Sparks-Yau, Butti-Zaffaroni

Future problems

- ► Global structure of 4d SCFT moduli. RG flows. Seiberg dualities.
- Inverse problem: Does the critical value of *a*-function characterize the toric diagram?
- ► Relation with dimers, algae, amoebae