Lattice QCD simulation with 2+1 flavors of dynamical overlap fermions

Hideo Matsufuru for JLQCD Collaboration

(with H.Fukaya, S.Hashimoto, K.Kanaya, T.Kaneko, M.Okamoto, T.Onogi, and N.Yamada)

Joint Meeting of Pacific Region Particle Physics Communities 29 October – 3 November 2006, Hawaii, USA

JLQCD's overlap project

Dynamical simulation with overlap fermions

- Main run: $16^3 \times 32$, $a \simeq 0.12$ fm (larger size is planned)
- lightest quark mass $\simeq m_s/6$
- Fixed topology by extra Wilson fermion
 - need to examine the effect of fixing topology
- $N_f = 2$ is now in productive run
- $N_f = 2 + 1$ is in progress

Overview/results at $N_f=2 o$ T.Kaneko's talk

In this talk:

- Algorithms of solver and HMC
- $N_f = 2 + 1$ simulation

New machines at KEK

Working since March 2006

Hitachi SR11000

- 2.15TFlops, 512MB memory
- 16 Power5+ ⊗16 nodes

IBM System Blue Gene Solution

- 57.3TFlops, 5TB memory
- 1024 nodes ⊗10 racks
- 8 × 8 × 8 torus network
- 2 PowerPC440 shares 4MB cache

Wilson kernel for BG:

Tuned by IBM Japan (J.Doi and H.Samukawa)

- double FPU instructions for complex arithmetics
- low level communication API

Wilson solver: ~29% of peak performance (on cache)

Action

$$S = S_G + S_F + S_E$$

- Gauge field S_G : Iwasaki (renormalization group improved)
- Overlap fermion $(N_f=2)$: $S_F=\phi^{\dagger}[D(m)^{\dagger}D(m)]^{-1}\phi$ overlap Dirac operator

$$D(m) = \left(m_0 + \frac{m}{2}\right) + \left(m_0 - \frac{m}{2}\right) \gamma_5 \mathrm{sign}(H_W)$$

 $H_W = \gamma_5 D_W$, D_W is Wilson-Dirac operator with $-M_0$

Extra Wilson fermion:

$$\det\left(\frac{H_W^2}{H_W^2 + \mu^2}\right) = \int \mathcal{D}\chi^{\dagger} \mathcal{D}\chi \exp[-S_E]$$

— suppresses near-zero modes of H_W

Vranas (2000); Fukaya (2006); S.Hashimoto et al., hep-lat/0610011

Solver algorithm (1)

Overlap Dirac operator

$$D(m) = \left(M_0 + \frac{m}{2}\right) + \left(M_0 - \frac{m}{2}\right)\gamma_5 \mathrm{sign}(H_W)$$

Zolotarev's partial fractional approximation

J. van den Eshof et al., Comp. Phys. Comm. 146 (2002) 203.

$$sign(H_W) = \frac{H_W}{\sqrt{H_W^2}} = H_W \left(p_0 + \sum_{l=1}^N \frac{p_l}{H_W^2 + q_l} \right)$$

- $(H_W^2 + q_l)^{-1}$: determined by Multishift CG simultaneously
- For smaller λ_{min} , larger N is needed for accuracy e.g. for N=10, $O(10^{-7})$ accuracy for λ_{min} =0.05 and $O(10^{-5})$ for 0.01.
- Subtraction of low modes of H_W \rightarrow sign(λ) ($\lambda < \lambda_{thrs}$) is explicitly determined

Solver algorithm (2)

- □ Nested CG algorithm
 - Outer CG for D(m), inner CG for $(H_W^2 + q_l)^{-1}$ (multishift) A.Frommer et al., Int. J. Mod. Phys. C 6 (1995) 627.
 - Relaxed CG: ϵ_{in} is relaxed as outer iteration proceeds N.Cundy et al., Comp. Phys. Comm. 165 (2004) 221.
 - Subtraction of low-modes of H_W applicable (safe from $\lambda_{min} \sim 0$)
 - Cost is almost unchanged as N
- □ 5-dimensional CG

A. Borici, hep-lat/0402035; R.G.Edwards et al., PoS LAT2005 (2006) 146.

- Making use of Schur decomposition
- Even-odd preconditioning
- Cost increases linearly in N
- Subtraction of low-modes of H_W is not applicable
 - \rightarrow difficulty at $\lambda_{min} \sim 0$

Solver algorithm (3)

Comparison:

($a \simeq 0.12 {\rm fm}$, $m \simeq 0.4 m_s$, single conf.)

- Relaxed CG is factor 2 faster than standard CG
- 5D solver is 2-3 times faster than relaxed CG for N=20
- If $\lambda \simeq 0$ does not appear, 5D solver has advantage

HMC algorithm (1)

Building blocks of accelerating HMC:

• Hasenbusch preconditioning: $S_F = S_{PF1} + S_{PF2}$ M.Hasenbusch, Phys. Lett. B 519 (2001) 177.

$$S_{PF1} = \phi_1^{\dagger} [D(m')^{\dagger} D(m')]^{-1} \phi_1$$
 (preconditioner)
 $S_{PF2} = \phi_2^{\dagger} \{D(m')[D(m)^{\dagger} D(m)]^{-1} D(m')^{\dagger} \} \phi_2$

- Multi-time step: $\Delta \tau_{(PF2)} > \Delta \tau_{(PF1)} > \Delta \tau_{(G)} = \Delta \tau_{(E)}$ J.C.Sexton and D.H.Weingarten, Nucl. Phys. B 380 (1992) 665.
- Overlap solver: relaxed CG/5D CG
- Reflection/refraction at $\lambda_{min} = 0$ Z.Fodor, S.D.Katz and K.K.Szabo, JHEP0408 (2004) 003.
 - Needs monitoring of λ_{min} and inverting $D^{\dagger}D$ twice
 - \Rightarrow skipped: $\lambda_{min} = 0$ is avoided by S_E

HMC algorithm (2): Noisy Metropolis

Most time consuming part: solvers in molecular dynamics Cost in MD is reduced by

- assuming no near-zero mode
- fixed λ_{thrs} , $N \simeq 10 \rightarrow$ adopting 5D solver
- no eigenvalue determination

Error in MD is corrected by Noisy Metropolis:

A.D.Kennedy and J.Kuti, Phys. Rev. Lett. 54 (1985) 2473.

After usual Metropolis, accept U_{new} with $P = \min\{1, e^{-dS}\}$,

$$dS = |W^{-1}[U_{new}]W[U_{old}]\xi|^2 - |\xi|^2$$

where W = D(m)/D'(m),

- D': relaxed overlap operator used in MD
- D: accurate overlap operator

Performance of N_f =2 simulations

Performance on Blue Gene (512-node)

 $a\sim 0.12$ fm, $\mu=0.2$, trajectory length: au=0.5

• HMC-1: With 4D (relaxed CG) solver

m_{ud}	$N_{\tau(PF2)}$	$\frac{\Delta \tau_{(PF2)}}{\Delta \tau_{(PF1)}}$	$\frac{\Delta au_{(PF1)}}{\Delta au_{(G,E)}}$	$N_{PF1,2}$	P_{acc}	time[min]
0.015	9	4	5	10	0.87	112
0.025	8	4	5	10	0.90	94
0.035	6	5	6	10	0.74	63

HMC-2: less precise 5D solver in MD + noisy Metropolis

 → factor ~2 accelerated

m_{ud}	$N_{ au(PF2)}$	$\frac{\Delta \tau_{(PF2)}}{\Delta \tau_{(PF1)}}$	$\frac{\Delta \tau_{(PF1)}}{\Delta \tau_{(G,E)}}$	N_{PF1}	$N_{PF2}^{(MD)}$	$N_{PF2}^{(NM)}$	P_{acc}	time[min]
0.015	13	6	8	10	16	10	0.68	52
0.025	10	6	8	10	16	10	0.82	43
0.035	10	6	8	10	16	10	0.87	36

$$N_f=2+1$$
 algorithm (1)

A. Bode et al., hep-lat/9912043

T. DeGrand and S. Schaefer, JHEP 0607 (2006) 020

$$H^2 = D\dagger(m)D(m)$$
 commutes with γ_5

$$H^2 = P_+ H^2 P_+ + P_- H^2 P_- \equiv Q_+ + Q_-$$

$$\det H^2 = \det Q_+ \cdot \det Q_-$$

Eigenvalues of Q+ and Q_- are the same except for zero modes

One of chirality sector realizes odd number of flavor (zero modes give const. contribution)

- Topology change can be implemented
 - Not necessary in our case

$N_f=2+1$ algorithm (2)

Pseudofermion action ($\sigma = 1$ or -1):

$$S_{PF1} = \phi_{1\sigma}^{\dagger} Q_{\sigma}^{-1}(m') \phi_{1\sigma}, \quad S_{PF2} = \phi_{2\sigma}^{\dagger} \left(\frac{Q_{\sigma}(m')}{Q_{\sigma}(m)} \right) \phi_{2\sigma}$$

• Refreshing $\phi_{1\sigma}$ and $\phi_{2\sigma}$ (with Gaussian ξ_{σ})

$$\phi_{1\sigma} = \sqrt{Q_{\sigma}(m')} \cdot \xi_{1\sigma}, \quad \phi_{2\sigma} = \sqrt{\frac{Q_{\sigma}(m)}{Q_{\sigma}(m')}} \cdot \xi_{2\sigma}.$$

- Polynomial or partial fractional approx.
- Other parts are straightforward
 e.g., force:

$$\frac{dS_{PF1}}{d\tau} = \phi_{1\sigma}^{\dagger} P_{\sigma} \left(\frac{dH^{2}(m')^{-1}}{d\tau} \right) P_{\sigma} \phi_{1\sigma}$$

etc.

Check: $N_f = 2 \text{ vs } N_f = 1 + 1 \text{ (1)}$

$$16^3 \times 32$$
 lattice, $\beta = 2.5, m_q = 0.09$

- Two positive chirality PS-fermions
- HMC-1 (4D solver, w/o noisy Metropolis) compared with $N_f = 2$, HMC-1
- Initial: $N_f = 2$ thermalized config.

•
$$M_{MD}^{(pf2)} = 4$$
, $R_{MD}^{(pf1)} = 5$, $R_{MD}^{(GE)} = 6$, $l_{trj} = 0.5$, $m' = 0.4$

	trj	plaq	P_{acc}	min/trj(BG 512 node)
Nf=1+1	1500	0.651219(16)	\sim 0.8	23
Nf=2	1000	0.651173(21)	0.81	13

- Consisitent with $N_f = 2$.
- Increased cost: largely due to refreshment of ϕ 's (Now Zolotarev approx. is used)

$N_f = 2 \text{ vs } N_f = 1 + 1 \text{ (2): solver}$

For Q_{σ} , number of H_W mult is effectively half of H^2 .

$$P_{\sigma}H^{2}P_{\sigma} = P_{\sigma}\left[a + \frac{b}{2}\{\gamma_{5}, \operatorname{sign}(H_{W})\}\right]P_{\sigma} = P_{\sigma}\left[a + \sigma b \cdot \operatorname{sign}(H_{W})\right]P_{\sigma}$$

(on different config.)

— Costs of $N_f = 1 + 1$ and $N_f = 2$ are comparable

N_f =2 vs N_f =1+1 (2): force

Total forces are similar to $N_f=2$ — Same HMC parameters are applicable

Test run: $N_f = 2 + 1$ (1)

$$\beta = 2.30, m_{ud} = 0.10, m_s = 0.10, Q = 0$$

- $N_f = 2 \oplus \text{positive chirality sector}$
- Other parameters are same as $N_f = 2$
- HMC-1 (4D solver, w/o noisy Metropolis)

•
$$M_{MD}^{(pf2)} = 5$$
, $R_{MD}^{(pf1)} = 5$, $R_{MD}^{(GE)} = 6$, $l_{trj} = 0.5$, $m' = 0.4$

Thermalization: 300 trjs (very preliminary)

	trj	plaq	P_{acc}	time/trj(BG 512 node)
Nf=2+1	150	0.609724(50)	\sim 0.76	70 min
Nf=2	4600	0.614685(12)	0.85	40 min

N_f =2+1 (2): solver/force

Solver convergence:

One flavor part is twice faster than $N_f = 2$

ightarrow total cost is \sim 1.5 times

Force hierarchy:

Total forces of 2+1 flavors are similar to $N_f=2$, 1+1

N_f =2+1 (3): β shift

$$\beta = 2.30, m_{ud} = m_s = 0.10, Q = 0$$

Very preliminary result

- 300 thermalization trjs.
- 30 configs (5 trj separated)

a is determined by hadronic radius (Sommer scale)

— tendency consistent with $N_f=2$

Summary/Outlook

JLQCD's dynamical overlap project

 $N_f=2$ is now in productive run at $16^3\times 32$, $a\simeq 0.12$ fm, $\simeq m_s/6$

Best solution: less precise 5D solver ⊕ Noisy Metropolis

We are preparing for $N_f=2+1$ simulations Improvement and parameter tuning are in progress

- 5D CG solver/Noisy Metropolis
- PS-fermion refreshment
- Tuning of HMC parameters (trajectory length, etc)