Fast Reactor Neutrino Detection with KASKA Prototype Detector : A Status Report

Joint Meeting of Pacific Region Particle Physics Communities

October 29 - November 03, 2006

Hawaii U.S.A.

Y.Tsuchiya, F.Suekane, H.Tabata, H.Furuta^A, Y.Sakamoto^B, KASKA Collaborator^{C-I}

Tohoku University, Tokyo Institute of Technology^A, Tohoku Gakuin University^B, Kobe University^C, KEK^D, Tokyo Metropolitan University^E, Niigata University^F, Hiroshima Institute of Technology^G, Miyagi University of Education^H, Osaka University^I and M.Takamatsu JAEA

Outline

Report of fast reactor neutrino detection with KASKA prototype detector at Joyo Experimental Reactor taking data from this fall.

Contents

- KASKA experiment
- Prototype detector and its motivations
- Preliminary result of prototype detector : Gadolinium spectrum
- Experimental Fast Reactor : Joyo
- First data of Fast Reactor experiment
- Summary

KASKA experiment

(Measurement θ_{13} peoject)

KAShiwazaki-KAriwa nuclear power station

Located at Niigata prefecture in Japan

Largest thermal energy in the world (24.3GWth)

- \rightarrow the most powerful neutrino source
- 7 reactors in two clusters

Location of far detector is optimized by oscillation maximum

KASKA detector

Region I : v_e target \rightarrow 9 tons 0.1 % Gadolinium liquid scintillator (Palo verde type) UV-transparent acrylic vessel diameter : 1.4m

(Gadolinium : the largest neutron cross section among all the elements)

Region $II : \gamma$ catcher \rightarrow Normal liquid scintillator UV-transparent acrylic vessel thickness of region II : 70cm diameter : 4.1m

Region Ⅲ : Inner buffer oil Thickness of region Ⅲ : 115cm

Region \mathbf{N} : Outer buffer oil Thickness of region \mathbf{N} : 50cm

Principle of the detection anti-neutrino

2006/10/30

KASKA prototype detector

Motivations

•Test of γ -catcher •Study of Gadolinium spectrum •Taking advantage of this study to full simulation γ -catcher LS •Background estimation from cosmic ray spallation •Unknown nuclides created by the spallation because of its large atmic number 0.9m³ 60cm Setups 16 8"PMT •UV-transparent spherical acrylic vessel with its diameter $1.2m \rightarrow \text{Region } II \text{ part}$ •LS contents : pseudocumene(13.5%) + isoparaffin(86.5 %) + PPO, BisMSB Sources (Am/Be, 60Co) •16 8" inch PMTs •Acrylic box : 6.75 liters, 0.1% Gd LS, \rightarrow Region I part •A drawer at the center of the box

Am/Be source

Comparing to simulation data Simulatio MC prototype Data DelayedE Live time = 5525.37 sec Delayed SumADC distribution 33190 Entries L5 < Ep < 6.5 MeV, NCT (2 - 30 usec) 1111112 (27) uiq/zH 250 152.6 CBp < 0.75, CBd < 0.5 83.52 1.6 200 1.4 1.2 150 0.8 100 0.6 0.4 0.2 0 100 500 600 700 800 900 1000 MeV 10 12

Difference between prototype and simulation

 \rightarrow The combination of γ rays causes

→ Necessary to improve simulation 2006/10/30 Yasushi Tsuchiya @Hawaii

Experimental Fast Reactor : Joyo

In order to test the prototype

- Fast Reactor : Joyo
- •P_{th}=140MWth
- •Fuel : U(70wt %), Pu(30wt %)
- •Operated by JAEA
- •Operation days / Cycle : 60
 - \rightarrow Easy on/off data taking
- •L~25m
- •~160 $v p \rightarrow e^+ n$ reaction/day 2006/10/30 Yasushi Tsuchiya @Hawaii

(http://www.jaea.go.jp/04/o-arai/joyo/indexs.htm)

Fast Reactor

Setup at Joyo

Motivation

- First fast reactor neutrino detection
- Observation of reactor on/off with detection neutrinos

Detector setups

- Detection region : 900 liters (whole detector)
- LS contents
 - Pseudocumene : 15%
 - Isoparaffin : 75%
 - BC-521 : 10%
- Cosmic ray counters
- Paraffin blocks
- Lead blocks

Shields are incomplete (cosmic ray counter, parrafin blocks)

 \rightarrow We are installing now

2006/10/30

BG measurement @ Joyo

No source in the detector

Neutrino window prompt energy : $4.5 \sim 6.5$ MeV delayed energy : $7.5 \sim 9.5$ MeV $2usec < \Delta t < 50usec$

(Neutrino events can be observed)

Count the events in this area to estimate a S/N ratio

258 [events/day]

Current S/N status (ν events / Background events)

- S : expected neutrino event
- $S = 1.2 \times 10^{-5} [/ton/GWt/s] @ 1km \times (1/40)^2 = 160 [events/day]$
- W=0.72 ton, P=0.14GW, T= 1[day]=86400[s]
- Efficiencies (total = 0.0089)
 - Prompt energy (4.5 ~ 6.5MeV) = 0.36
 - ∠t (2 ~ 50 usec) = 0.58
 - Gd's energy selection = 0.19
 - Charge balance cut = 0.31
- S = 1.4 [events/day]
- N : background events = 258 [events/day]
- S/N requirement = at least 1/10 (to achieve 3 sigma)
 - S/N = 1.4 / 258 ~ 1 / 184
 - 100 days operation $S \rightarrow 140$ events
 - Necessary to improve S/N by 18 times

Summary

- Preliminary result of the prototype detector:
 Gadolinium spectrum
- The protototype is taking real neutrino data at Joyo
- First Fast Reactor experiment
- Data taking until June, 2007

End of talk

Thank you very much for your attention !

Warning !

I am a graduate student, so please ask me questions slowly in plain English.

Backup slides

Charge balance cut

Calculate standard deviation of 16 ADCs each event and cut events using this value

Prompt deayed distance cut

The reaction position between prompt signal and delayed siganl is relatively close

 $d_{SIG} < d_{BG}$

Efficiencies

- Gd efficieny :
 - The probability of neutron absorption in Gd-LS
 - The neutron is absorbed by Gadolinium with this probability.
- ∠t cut :

 - We cut the events using this Δt value.
 - The neutron is absorbed tytically 30us after prompt signal in Gd-LS.