Fast Reactor Neutrino Detection with KASKA Prototype Detector: A Status Report

Joint Meeting of Pacific Region Particle Physics Communities
October 29 - November 03, 2006
Hawaii U.S.A.

Y.Tsuchiya, F.Suekane, H.Tabata, H.FurutaA, Y.SakamotoB, KASKA CollaboratorC-I
Tohoku University, Tokyo Institute of TechnologyA, Tohoku Gakuin UniversityB, Kobe UniversityC, KEKD, Tokyo Metropolitan UniversityE, Niigata UniversityF, Hiroshima Institute of TechnologyG, Miyagi University of EducationH, Osaka UniversityI and M.Takamatsu JAEA

2006/10/30 Yasushi Tsuchiya @Hawaii
Outline

Report of fast reactor neutrino detection with KASKA prototype detector at Joyo Experimental Reactor taking data from this fall.

Contents

• KASKA experiment
• Prototype detector and its motivations
• Preliminary result of prototype detector: Gadolinium spectrum
• Experimental Fast Reactor: Joyo
• First data of Fast Reactor experiment
• Summary
KASKA experiment
(Measurement θ_{13} project)

KASShiwazaki-KAriwa nuclear power station

Located at Niigata prefecture in Japan
Largest thermal energy in the world (24.3GWth)
→ the most powerful neutrino source
7 reactors in two clusters

Location of far detector is optimized by oscillation maximum

Near

Far

Near

Near detector

~0.4km

50m

~1.8km

150m

Far detectors
KASKA detector

Region Ⅰ: ν_e target \rightarrow 9 tons 0.1 %
Gadolinium liquid scintillator (Palo verde type)
UV-transparent acrylic vessel
diameter: 1.4m
(Gadolinium: the largest neutron cross section among all the elements)

Region Ⅱ: γ catcher \rightarrow Normal liquid scintillator
UV-transparent acrylic vessel
thickness of region Ⅱ: 70cm
diameter: 4.1m

Region Ⅲ: Inner buffer oil
Thickness of region Ⅲ: 115cm

Region Ⅳ: Outer buffer oil
Thickness of region Ⅳ: 50cm
Principle of the detection anti-neutrino

\[\bar{\nu}_e + p \rightarrow e^+ + n \]

Prompt signal

\[e^+ + e^- \rightarrow 2\gamma(0.511\text{MeV} \times 2) \]

Delayed signal

\[n + \text{Gd} \rightarrow \text{Gd'} + \gamma\text{'s}(\sum E_\gamma \sim 8\text{MeV}) \]

(Energy spectrum Gd gamma rays not well known)

\[1^\sim 8\text{MeV} \rightarrow 8\text{MeV} \]

Signal Property

30µs

Gd Liquid Scintillator

Ep: \(K_{e^+} + 511\text{keV} \times 2 \)

Ed: \(\Sigma E_\gamma \sim 8\text{MeV} \)
KASKA prototype detector

Motivations

- Test of γ-catcher
 - Study of Gadolinium spectrum
 - Taking advantage of this study to full simulation
- Background estimation from cosmic ray spallation
 - Unknown nuclides created by the spallation because of its large atomic number

Setups

- UV-transparent spherical acrylic vessel with its diameter 1.2m → Region II part
- LS contents: pseudocumene(13.5%) + isoparaffin(86.5%) + PPO, BisMSB
- 16 8” inch PMTs
- Acrylic box: 6.75 liters, 0.1% Gd LS, → Region I part
- A drawer at the center of the box
Am/Be source

Neutrino like signal

Population of gamma-ray from Gd

Use this population in our MC simulation

Check the combination of gamma-rays from Gd comparing to prototype data
Comparing to simulation data

Difference between prototype and simulation

→ The combination of γ rays causes

→ Necessary to improve simulation

2006/10/30 Yasushi Tsuchiya @Hawaii
Experimental Fast Reactor: Joyo

- Fast Reactor: Joyo
- $P_{th} = 140$ MWth
- Fuel: U(70wt %), Pu(30wt %)
- Operated by JAEA
- Operation days / Cycle: 60
 → Easy on/off data taking
- L ~ 25m
- $\sim 160 \nu p \rightarrow e^+ n$ reaction/day

(http://www.jaea.go.jp/04/o-arai/joyo/indexs.htm)

KASKA prototype detector

Now data taking!
Fast Reactor

Joyo Fast Reactor
Fuel: Uranium, Plutonium
→ Pu rich neutrino

Light Water Reactor
Fuel: Uranium
→ U rich neutrino

Combine two data → Determination of U and Pu neutrino spectra separately!

This test can only measure reactor on/off.
Setup at Joyo

- Motivation
 - First fast reactor neutrino detection
 - Observation of reactor on/off with detection neutrinos
- Detector setups
 - Detection region: 900 liters (whole detector)
 - LS contents
 - Pseudocumene: 15%
 - Isoparaffin: 75%
 - BC-521: 10%
 - Cosmic ray counters
 - Paraffin blocks
 - Lead blocks

Shields are incomplete (cosmic ray counter, paraffin blocks)

→ We are installing now
Acrylic sphere

Cosmic-ray anti counter

Gd-LS

Reactor is behind the wall
BG measurement @ Joyo

No source in the detector

Neutrino window
prompt energy : 4.5 ~ 6.5 MeV
delayed energy : 7.5 ~ 9.5 MeV
2usec < Δt < 50usec

(Neutrino events can be observed)
Count the events in this area to estimate a S/N ratio

258 [events/day]
Current S/N status
(\(\nu\) events / Background events)

- **S**: expected neutrino event

 \[
 S = 1.2 \times 10^{-5} \left[\text{ton/GWt/s} \right] \times \left(\frac{1}{40} \right)^2 = 160 \text{ [events/day]}
 \]

- **W**: 0.72 ton, **P**: 0.14 GW, **T**: 1 [day] = 86400 [s]

- **Efficiencies (total = 0.0089)**
 - Prompt energy (4.5 ~ 6.5 MeV) = 0.36
 - \(\Delta t\) (2 ~ 50 usec) = 0.58
 - Gd’s energy selection = 0.19
 - Charge balance cut = 0.31

- **S** = 1.4 [events/day]

- **N**: background events = 258 [events/day]

- **S/N requirement**: at least 1/10 (to achieve 3 sigma)

 - S/N = 1.4 / 258 ~ 1 / 184
 - 100 days operation S \(\rightarrow\) 140 events
 - Necessary to improve S/N by 18 times
First data of fast reactor experiment

2D histogram of reactor ON

Select these events in this range and project to X axis

2~3 neutrino events are expected in this region (2 days)

→ under analysis
Expected S/N improvement

For 50% γ efficiency, n rejection rate > 90% \rightarrow S/N becomes more than 5 times better (S/N ~ 1/37)

Complete shields \rightarrow ? times better: S/N aim at 1/10 (3 sigma)
Summary

• Preliminary result of the prototype detector: Gadolinium spectrum
• The prototype is taking real neutrino data at Joyo
• First Fast Reactor experiment
• Data taking until June, 2007
End of talk

Thank you very much for your attention!

Warning!
I am a graduate student, so please ask me questions slowly in plain English.
Backup slides
Charge balance cut

Calculate standard deviation of 16 ADCs each event and cut events using this value:

\[\sigma = \sqrt{\frac{a^2}{\langle a \rangle^2}} - 1 \]

To reduce events reacting near the surface (ex. environmental background)

Ex.) Delayed energy of Gd-LS box + Am/Be data

![Graphs showing before and after cuts with energy distribution.](image)
Prompt delayed distance cut

The reaction position between prompt signal and delayed signal is relatively close

\[d_{SIG} < d_{BG} \]
Efficiencies

• Gd efficiency :
 • The probability of neutron absorption in Gd-LS
 • The neutron is absorbed by Gadolinium with this probability.

• Δt cut :
 • Δt is the time between prompt signal and delayed signal.
 • We cut the events using this Δt value.
 • The neutron is absorbed typically 30us after prompt signal in Gd-LS.