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Pure-spinor Superstrings

Berkovits(2000)
Fields
Xﬂ(,u =0,... ,9) : spacetime coordinates
0% po(a=1,...,16) : spacetime Majorana-Weyl spinors
(worldsheet scalars) and conjugates
A% we(a=1,...,16): spacetime bosonic spinor ghosts

(worldsheet scalars) and conjugates

“Pure-spinor” constraints : \y*\ = 0

v*: 16x16 symmetric matrices; off-diagonal blocks of
gamma matrices in chiral representation

BRST charge: (= /Ao‘da
do = Do — 5 (0 + £0+"06) (,).



Lower-dimensional pure-spinor
superstrings
Wyllard; Grassi,Wyllard hep-th/0509140

D=4 D=6 D=10
Pure-spinor constraints ATPA=0  Xy#A =0 M*A=0
Spinor type VWeyl symplectic-VVeyl Weyl
Independent components D=4 D=6 D=10
0%, Pa 2x4 2x8 2x16
A%, Wy, 2x2 2x5 2x1 |

e Constructed by just mimicking the D=10 procedure
® Super-Poincare covariant (but the pure spinor constraints)

® No compact matter couplings



What are these theories!?

® Are these lower-dimensional pure-spinor models equivalent
to (or at least related to) the Green-Schwarz superstrings,
as has been shown in D=10?

e [f yes, there should be some inconsistency, but where!?

e Why do its spectra coincide with those of noncritical

i ?
stringst Adam,Grassi,Mazzucato,Oz,Yankielowicz hep-th/06051 |18

¥

Use Aisaka-Kazama’s double-spinor formalism



Doulbe-spinor formalism
Aisaka,Kazama(hep-th/0502208)

Start from Green-Schwarz-like action with an extra set of
fermionic coordinates #% in addtion to % The action has
a local femionic symmetry (besides K -symmetry) which
can be gauge-fixed to ordinary Green-Schwarz action.

Impose the semi-light cone gauge condition to 92, while
keeping 9“ covariant. Compute the Dirac bracket.

. Find a new set of fields so that they are canonical w.r.t. the

Dirac bracket. Write the remaining Ist class constraints
using these fields.
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Doulbe-spinor formalism(cont'd)

. Quantization. Replace Dirac brackets with OPEs.

Remove double-contraction singularities by appropriately
fixing normal-ordering ambiguities of the constraints.

¥

Closed constraint algebra = Standard BRST charge

Energy-momentum tensor is automatically modified to
vanishing central charge

BRST charge is automatically nilpotent and cohomologically
equivalent to the pure-spinor BRST charge



Strategy

e Consider the D=4 analogue of the double-spinor action

e Take the same steps as Aisaka-Kazama and see if there are
any problem:

- Free fields really found?
- OPEs close!?
- Central charge vanishes?

- BRST charge equivalent to the pure-spinor one!



D=4 Aisaka-Kazama double-spinor

superstring (type 11B)
L=Lg+ Lwz

1
L = —§v—ggabHaHb
LWZ = Eab (Ha(Wb — Wb> — WaWb)

=A ~ _
= 0,X" i > (Wi +i0,(040"0 — 04070%))
A=12
WAr = j(046"9,04 — 9,04¢404) 04 =64 ¢4

® g.b,...: worldsheet, 4 v ...=0,1,2,3 :spacetime indices
® Spinors are all two-component, complex VWeyl

® A =12 — (eventually) left, right

® Local fermionic symmetry : 0 = 60 = ¢(t, o)

® Can be gauge-fixedto 04 =64, 64 =0 — GS action



Constraints




Canonical analysis

{X#(0), P"(0")}p =n"6(c —0')

{D5 (o), l?ﬁi(a,)}P =2i6""0,,,50(c — o' )T (o)
{[)é(a), DB (c)}p = 225‘430“@55(0 — oI (0")
_B
{D3(0), Dg(c")}p =—2i6%%0,,56(c — ") (o)
{D4(0), D5(0")}p = —2i6%P5,,536(c — o)1} (o)
where I = PH 4+ (I —Wh _ +WE )

nt = 4+1(-1)if A=1(2)
A=2(1)if A=1(2)



Partial gauge fixing

For each A D2 12 first class

D2 : | first class +1 second class

A
semi-light cone D .2 first class
gauge D% :2 second class

Decompose “tilde” constraints D2 w.r.t. the transverse SO(2) chirality,
then the upper (& =1) component is of second class, while the lower (&
=2)component is gauge fixed by the semi-light cone gauge condition

ocT04 =0 o 042 =

_ = A
Similarly for D2 and D,



Dirac bracket

{Alo), B(o')}p = {Al0), B(o)}p

{Di(¢), B(o')}p
fgiDi(€), Blo)}p
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where

8i0(c — o')T (o') + second class

{K(o), K(o')}p



We will examine:

|. The Dirac brackets between the basic variables are shifted
from the canonical values. In D=10 Aisaka-Kazama found a
set of canonical variables w.r.t. the Dirac bracket which
were eventually identified with the free fields in the pure
spinor formalism. How about the D=4 case!?

2. In quantization one replaces Dirac brackets with suitable
OPEs. Then double contractions give rise to 2nd or higher
order singularities and the OPEs do not close.In D=10
normal ordering ambiguities of the constraints are used to

cancel the extra singularities. Does such a mechanism work
in D=4?

3. If the constraint algebras close, what'’s the relationship
between the BRST charges in this and the pure-spinor
formalisms!?



-

Answer to #l|

“Free fileds’” can be found

PF + i(90“5 — Hotf) — i(éa“g — éa“é_)’,
_ 5. =A1 _5=A1
P+ <(—z'X+’ — 66120420 — 2026%0 )

~

_ 5. A1 _ . 5=AlL
P+ ((—i(Xl +iX?) — 6019470 — 201194%0
4 6(9—A19—A2)/ém 4 419A19A29AY
~=A1 = s~ =AL
_2<9A19 )/9A2+2(9A29A1>/(9 )
(with < without in P
(with < without in P§)
XH (), PY(c")Yp =n*6(c — o
1X"(a), P y
{04%(0), P§(0")}p = —64"n5é(o — o)

[64(a), Py(0")}p = —68535(c — o)



Answer to #2

In terms of new canonical variables the constraints can be written
. ~ 1 _ _ _
= dy—iv2mtS do = P, + (—zaX“ ~ 5 (60706 ~ 890“9)) (0,40)a

:dg—l\/ 7TS—2§862 _ _ 1 —~ =
doy = Py + (—i@X“ — — (0”00 — 0650 ) 0o, )a
= d; —|—Z\/27T+S 2( ) ) (o)

— 4ty 2+7rs _ 2§a 92 = i0X" + 0ot90 — 900
-
_ mr - 595 - 053 | V2i(S90°7 + 96°5r) 0 3
o = vt Ly
+ﬂz‘<saéi + 005) . 15506296? TET AW
\/7T+ 7T+ 7—.‘.:7.‘.1_7:7_‘_2
= D,
%° 1./ 1\ .
— D2—7T—+——@(ﬂ_+>(99
> - g AT
= Dy = D (2) Do) ~ Y
_ 0%0° 1 1 5 Z—w
— DQ - —+ - 58 7T+ 8(9
70
OPEs close due to modifications

_ Plogm" | 06°0%" — 9°0°06°

= 3 coming from normal ordering



Answer to #3

® One can construct a nilpotent BRST charge in a standard
manner, which is shown to reduce to the pure spinor BRST
charge by a series of similarity transformations.

® One can also find a BRST trivial energy-momentum tensor.
The central charge is automatically adjusted to zero by
fixing the normal-ordering ambiguities of the constraints (so
that they close).



Conclusions

® D=4 double-spinor superstring, which is classically
equivalent to D=4 GS superstring, allows BRST quantization
by appropriately modifying constraints. The resulting theory
is equivalent to the D=4 pure-spinor superstring.

® The modification is thought of as coming from normal-
ordering ambiguities of the constraints. Since this is a purely
quantum effect, this mechanism is reminiscent of how
conformal mode become dynamical and adjust central
charge to zero in noncritical string theory. In that sense the
Lorentz invariance is broken spontaneously.



