Semileptonic *D* Results at CLEO-c

Feng Liu

Southern Methodist Univ., Dallas TX Representing the CLEO Collaboration DPF 2006 & JPS 2006, Honolulu, Hawaii October 29 - November 3, 2006

Topics

- Inclusive *D* semileptonic decays (hep-ex/0604044)
- Form factors, and V_{cs} , V_{cd} from $D \to K/\pi e^+ \nu$
- First measurement of form factors in $D \to \rho e^+ \nu$
- Form factors in $D^+ \to K^- \pi^+ e^+ \nu$ (PRD **74**, 052001 (2006))
- First observation of rare decays $D^+ \to \eta e^+ \nu$, $D^0 \to K^- \pi^+ \pi^- e^+ \nu$
- Data Sample: 281 ${\rm pb}^{-1}$ at the $\psi(3770)$
- All results are preliminary except $D^+ \to K^- \pi^+ e^+ \nu$ published

Why *D* Semileptonic Decays

• D Semileptonic Decays and CKM matrix elements

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

• Inclusive semileptonic Decays
$$D \to X e^+ \nu$$

• Lepton spectra and BR's (theorectical predictions)

• Exclusive
$$D^0 \rightarrow K^- e^+ \nu$$
, $\pi^- e^+ \nu$, etc.:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} \left| V_{cq} \right|^2 p_P^3 \left| f_+(q^2) \right|^2$$

 \circ V_{cs} , V_{cd} and form factors (test LQCD)

cs(d)

s(d)

• many systematics cancel in \mathcal{B} (Double tag)

Analysis Technique

- How to measure absolute *B*?
- 1. D Tagging: one D hadronic decays to tag the D semileptonic decays
 - $\triangleright D$ Tag: $N_{tag} = 2N_{D\bar{D}}\mathcal{B}_{tag}\epsilon_{tag}$
 - \triangleright D Semilep: $N_{sig} = 2N_{D\bar{D}}\mathcal{B}\mathcal{B}_{tag}\epsilon_{sig}$ $U = E_{miss} p_{miss}$ peaks @0.

$$M_{bc} = \sqrt{E_{beam}^2 - p_D^2}$$
$$\Delta E = E_D - E_{beam}$$

$$\Rightarrow \qquad \mathcal{B} = \frac{N_{sig}/\epsilon_{sig}}{N_{tag}/\epsilon_{tag}} = \frac{N_{sig}}{N_{tag}\epsilon_{sig}/\epsilon_{tag}}$$

2. Without *D* Tagging: neutrino reconstruction $\vec{\mathbf{p}}_{\nu} = \vec{\mathbf{p}}_{evt} - (\vec{\mathbf{p}}_{chrg} + \vec{\mathbf{p}}_{neu})$ $\triangleright D \text{ reconstructed by} \begin{cases} \Delta E = E_{had} + E_e + |\vec{\mathbf{p}}_{\nu}| - E_{beam} \\ M_{bc} = \sqrt{E_{beam}^2 - (\vec{\mathbf{p}}_{had} + \vec{\mathbf{p}}_e + \vec{\mathbf{p}}_{\nu})^2} \end{cases}$ $\triangleright \mathcal{B} = \frac{N_D}{2N_D \bar{D}\epsilon}$

Feng Liu, Southern Methodist Univ.

Inclusive *D* **Semileptonic Decays**

mode	branching fraction
$D^0 \to X e^+ \nu$	$(6.46 \pm 0.17 \pm 0.13)\%$
$\sum_{excl.} \mathcal{B}(D^0 \to X e^+ \nu)$	(6.1±0.2±0.2)%
$D^+ \to X e^+ \nu$	$(16.13 \pm 0.20 \pm 0.33)\%$
$\sum_{excl.} \mathcal{B}(D^+ \to X e^+ \nu)$	$(15.1 \pm 0.5 \pm 0.5)\%$

• consistent with the known exclusive modes saturating the inclusive BR's

$$\frac{\Gamma_{D^+}^{SL}}{\Gamma_{D^0}^{SL}} = \frac{\mathcal{B}_{D^+}^{SL}}{\mathcal{B}_{D^0}^{SL}} \times \frac{\tau_{D^0}}{\tau_{D^+}} = 0.985 \pm 0.028 \pm 0.015$$

• consistent with isospin symmetry

hep-ex/0604044, submitted to PRL.

Results of *D* **Semileptonic Decays**

• D Semileptonic BR's

Mode	Tag (%)	Untag (%)	PDG'06 (%)
$D^0 \to K^- e^+ \nu$	$3.58{\pm}0.05{\pm}0.05$	$3.56{\pm}0.03{\pm}0.11$	$3.51{\pm}0.11$
$D^0 o \pi^- e^+ \nu$	$0.309{\pm}0.012{\pm}0.006$	$0.301{\pm}0.011{\pm}0.010$	$0.281{\pm}0.019$
$D^+ \to \bar{K}^0 e^+ \nu$	$8.86{\pm}0.17{\pm}0.20$	$8.75{\pm}0.13{\pm}0.30$	$8.6{\pm}0.5$
$D^+ \to \pi^0 e^+ \nu$	$0.397{\pm}0.027{\pm}0.028$	$0.383{\pm}0.025{\pm}0.016$	$0.44{\pm}0.07$

Ratio	$\frac{\Gamma(D^0 \to \pi^- e^+ \nu)}{\Gamma(D^0 \to K^- e^+ \nu)}$	$\frac{\Gamma(D^0 \to \pi^- e^+ \nu)}{\Gamma(D^+ \to \pi^0 e^+ \nu)}$	$\frac{\Gamma(D^0 \to K^- e^+ \nu)}{\Gamma(D^+ \to K^0 e^+ \nu)}$
CLEO-c	$(8.5 \pm 0.3 \pm 0.1)\%$	$1.95{\pm}0.15{\pm}0.14$	$1.02{\pm}0.02{\pm}0.02$
		$1.99{\pm}0.15{\pm}0.10$	$1.03{\pm}0.02{\pm}0.04$
PDG'06	$8.0 {\pm} 0.6$		

- More precise results
- Ratios of $\frac{\Gamma_{D^0}}{\Gamma_{D^+}}$ consistent with isospin symmetry
- PDG'06 dominated by CLEO-c results from 56 pb^{-1}

Comparison with Other Results

- Modified pole $f_+(q^2) = \frac{f_+(0)}{(1-q^2/M_{pole}^2)(1-\alpha q^2/M_{pole})} \Rightarrow$ simple pole ($\alpha = 0$).
- Hill series expansion (Phys. Lett. **B633**, 61 (2006).

Feng Liu, Southern Methodist Univ.

DPF 2006 & JPS 2006, Honolulu, Hawaii

Form Factor Fits (Untagged)

Southern Methodist Univ.

DPF 2006 & JPS 2006, Honolulu, Hawaii

Form Factor Fits (Tagged/Untagged)

Feng Liu, Southern Methodist Univ. DPF 2006 & JPS 2006, Honolulu, Hawaii

Form Factors and Tests of LQCD

Feng Liu, Southern Methodist Univ.

V_{cs} and V_{cd} Results

With $f_+(0)$ from unquenched LQCD (PRL 94, 011601 (2005)) and $V_{cx}f_+(0)$ values from fits $\rightarrow V_{cs}$ and V_{cd}

Mode	$V_{cx} \pm (stat.) \pm (sys.) \pm (theory)$	PDG'06
$D \rightarrow \pi e \nu$ (tagged)	$0.234{\pm}0.010{\pm}0.004{\pm}0.024$	$0.230{\pm}0.011$
$D ightarrow \pi e u$ (untagged)	$0.229{\pm}0.007{\pm}0.005{\pm}0.024$	$0.230{\pm}0.011$
$D \rightarrow Ke \nu$ (tagged)	$0.996{\pm}0.008{\pm}0.015{\pm}0.104$	$0.957{\pm}0.095$
$D \rightarrow Ke \nu$ (untagged)	$1.014{\pm}0.013{\pm}0.009{\pm}0.106$	$0.957 {\pm} 0.095$

- Expt.uncertainty $V_{cs} < 2\%$, $V_{cd} < 4\%$, LQCD $\sim 10\%$.
- Alternatively, V_{cs} ($W \rightarrow cs$) and $V_{cd} = -V_{us}$ from other experiments, we determine $f_+(0)$ (<2% for $f_+(0)^K$, <4% for $f_+(0)^{\pi}$) to test LQCD (~10%).
- Tagged/Untagged: 40% overlap, DO NOT AVER-AGE
- Results from untagged method are about to be submitted to PRL and PRD

$$D \to \rho e^+ \nu$$

• Five variables: q^2 , $\cos \theta_\ell$, \cos_V , χ and M_V $d\Omega \equiv dq^2 d \cos \theta_\pi d \cos \theta_e d\chi dm(\pi\pi)$ 4-D $(q^2, \cos \theta_\ell, \cos_V, \chi)$ fit to data

$$\begin{aligned} \frac{d\Gamma}{d\Omega} &= \mathcal{B}(\rho \to \pi\pi) \frac{3G_F^2 |V_{cd}|^2}{8(4\pi)^4} p_{\rho 0} q^2 \mathcal{B}W(m(\pi\pi)) \times \left\{ (1 + \cos\theta_e)^2 \sin^2\theta_\pi |H_+(q^2, m(\pi\pi))|^2 + (1 - \cos\theta_e)^2 \sin^2\theta_\pi |H_-(q^2, m(\pi\pi))|^2 + 4\sin^2\theta_e \cos^2\theta_\pi |H_0(q^2, m(\pi\pi))|^2 + 4\sin\theta_e (1 + \cos\theta_e) \sin\theta_\pi \cos\theta_\pi \cos\chi H_+(q^2, m(\pi\pi)) H_0(q^2, m(\pi\pi)) - 4\sin\theta_e (1 - \cos\theta_e) \sin\theta_\pi \cos\theta_\pi \cos\chi H_-(q^2, m(\pi\pi)) H_0(q^2, m(\pi\pi)) - 2\sin^2\theta_e \sin^2\theta_\pi \cos2\chi H_+(q^2, m(\pi\pi)) H_-(q^2, m(\pi\pi)) \right\} \\ H_{\pm}(q^2) &= (M_D + M_V) A_1(q^2) \mp 2 \frac{M_D p_V}{M_D + M_V} V(q^2), \\ H_0(q^2) &= \frac{1}{2M_V} \sqrt{q^2} \left[\left(M_D^2 - M_V^2 - q^2 \right) (M_D + M_V) A_1(q^2) - 4 \frac{M_D^2 p_V^2}{M_D + M_V} A_2(q^2) \right] \\ &\quad A_{1(2)}(q^2) = \frac{A_{1(2)}(0)}{1 - q^2/M_A^2} \quad V(q^2) = \frac{V(0)}{1 - q^2/M_V} \quad R_V \equiv \frac{V(0)}{A_1(0)} \quad R_2 \equiv \frac{A_2(0)}{A_1(0)} \end{aligned}$$

DPF 2006 & JPS 2006, Honolulu, Hawaii

• significant S-wave amp. confirmed $(h_0 \neq 0)$, no evidence for d- or f-wave (PRD **74** 052001 (2006), two sets of event selection)

- first observation of $\eta e^+ \nu$ and $K^- \pi^+ \pi^- (K_1) e^+ \nu$
- improved $\mathcal{B}(\omega e^+\nu)$ and ULs for $\eta' e^+\nu$ and $\phi e^+\nu$.

Summary

- Precise inclusive lepton spectra
- Precise D semileptonic BR's $\rightarrow V_{cs}$ and V_{cd}
- Precise results on $D \to P e^+ \nu$ form factors to test LQCD
- First study of FF in $D \rightarrow \rho e^+ \nu$ and confirmed significant S-wave amplitude in $D^+ \rightarrow K^{*0} e^+ \nu$.
- Seach for new mode, first observation of $\eta e^+\nu$ and $K^-\pi^+\pi^-e^+\nu$
- We expect further improvement with more data (750 pb^{-1} planned).

CLEO-c Detector

- CLEO-c:
 - \diamond B=1 T;
- \diamond tracking (93% of 4 π)
 - \triangleright 16 axial, 31 stereo lay.
 - $\triangleright \sigma_p/p \sim 0.6\%$
- ◊ Csl (95% of 4π) ▷ σ_E/E ~5% @ 0.1 GeV ~2.2% @ 1 GeV
- ◇ Hadron ID
 ▷ RICH (80% of 4π)+dE/dx
 ▷ ϵ_K >90% w/ few% fakes

◊ Electron ID ▷ RICH+dE/dx + Csl