Muon Cooling and Future Muon Facilities

Daniel M. Kaplan

Joint Meeting of Pacific Region Particle Physics Communities (DPF2006 & JPS 2006)
Sheraton Waikiki Hotel, Honolulu, HI
29 October – 3 November, 2006
Outline:

1. Muon Colliders
2. Neutrino Factories
3. Muon Cooling
4. MERIT, MICE, MANX, EMMA
5. Summary
Why Muon Colliders?

• A pathway to high-energy lepton colliders
 – unlike e^+e^-, \sqrt{s} not limited by radiative effects

⇒ a muon collider can fit on existing laboratory sites even for $\sqrt{s} > 3$ TeV:
Why Muon Colliders?

- A pathway to high-energy lepton colliders
 - unlike $e^+ e^-$, \sqrt{s} not limited by radiative effects

\Rightarrow a muon collider can fit on existing laboratory sites even for $\sqrt{s} > 3$ TeV:

- Also...
Why Muon Colliders?

- A pathway to high-energy lepton colliders
 - unlike e^+e^-, \sqrt{s} not limited by radiative effects
 \Rightarrow a muon collider can fit on existing laboratory sites even for $\sqrt{s} > 3$ TeV:

 - E.g., $\mu\mu$-collider resolution can separate near-degenerate scaler and pseudo-scalar Higgs states of high-tan β SUSY

- Also...
 - s-channel coupling of Higgs to lepton pairs $\propto m^2_{\text{lepton}}$
Why a Neutrino Factory?

- Neutrino mixing raises fundamental questions:

1. What is the neutrino mass hierarchy?
 - “natural”
 - ν_3
 - “inverted”
 - ν_2
 - OR?
 - ν_1
 - ν_3

2. Why is pattern of neutrino mixing so different from that of quarks?

 - CKM matrix:
 - $\theta_{12} \approx 12.8^\circ$
 - $\theta_{23} \approx 2.2^\circ$
 - $\theta_{13} \approx 0.4^\circ$
 - hierarchical & nearly diagonal

 - PMNS matrix:
 - $\theta_{12} = 30^\circ$ (solar)
 - $\theta_{23} = 45^\circ$ (atmospheric)
 - $\theta_{13} < 13^\circ$ (Chooz limit)

 $\begin{pmatrix}
 \sim \frac{\sqrt{2}}{2} & \sim -\frac{\sqrt{2}}{2} & \sin \theta_{13} e^{i\delta} \\
 \sim \frac{1}{2} & \sim \frac{1}{2} & \sim -\frac{\sqrt{2}}{2} \\
 \sim \frac{1}{2} & \sim \frac{1}{2} & \sim \frac{\sqrt{2}}{2}
 \end{pmatrix}$

3. How close to zero are the small PMNS parameters θ_{13}, δ?
 - → are they suppressed by underlying dynamics? symmetries?
Why a Neutrino Factory?

• Neutrino mixing raises fundamental questions:

1. What is the neutrino mass hierarchy?

 “natural”………
 \[\nu_3 \hspace{1cm} \nu_2 \hspace{1cm} \nu_1 \]

 “inverted”……
 \[\nu_1 \hspace{1cm} \nu_2 \hspace{1cm} \nu_3 \]

 OR?

2. Why is pattern of neutrino mixing so different from that of quarks?

 CKM matrix: \(\theta_{12} \approx 12.8^\circ \), \(\theta_{23} \approx 2.2^\circ \), \(\theta_{13} \approx 0.4^\circ \) (hierarchical & nearly diagonal)

 PMNS matrix: \(\theta_{12} = 30^\circ \) (solar), \(\theta_{23} = 45^\circ \) (atmospheric), \(\theta_{13} < 13^\circ \) (Chooz limit)

 \[\begin{pmatrix} \approx \frac{\sqrt{2}}{2} & \approx -\frac{\sqrt{2}}{2} & \sin \theta_{13} \ e^{i\delta} \\ \approx 1/2 & \approx 1/2 & \approx -\frac{\sqrt{2}}{2} \\ \approx 1/2 & \approx 1/2 & \approx \frac{\sqrt{2}}{2} \end{pmatrix} \]

3. How close to zero are the small PMNS parameters \(\theta_{13}, \delta \) ?

 \(\rightarrow \) are they suppressed by underlying dynamics? symmetries?

• These call for a program to measure the PMNS elements as well as possible.
Neutrino Factory Physics Reach

- Neutrino Factory is most sensitive technique yet devised
 see e.g. M. Lindner, hep-ph/0209083
 & C. Albright et al., Fermilab-FN-692 (2000)

CP-sensitivity comparison ➔

Oscillation-parameter comparison ↓

(plots from A. Blondel, NO-VE Workshop, Venice, Dec. 03)
Muon Facility Examples:

- Neutrino Factory:

 (Feasibility Study-II)

 Induction linac No.1
 100 m
 drift 20 m

 Induction linac No.2
 80 m
 drift 30 m
 Induction linac No.3
 80 m

 recirculator Linac
 2 – 20 GeV

 proton driver
 target
 mini-cooling
 3.5 m of LH, 10 m drift
 bunching 56 m
 cooling 108 m
 Linac 2 GeV

 neutrino beam
 storage ring
 20 GeV
Muon Facility Examples:

- Neutrino Factory:
 (Feasibility Study-II)

 Induction linac No.1
 100 m
 drift 20 m

 Induction linac No.2
 80 m
 drift 30 m

 Induction linac No.3
 80 m

 recirculator Linac
 2 – 20 GeV

 neutrino beam

- $\mu^+\mu^-$ collider:

 proton driver

 target
 mini–cooling
 3.5 m of LH, 10 m drift

 bunching 56 m
 cooling 108 m

 Linac 2 GeV

 storage ring
 20 GeV

 300kW proton

 μ^+ postcoolers/preaccelerators μ^-

 2.5 km Linear Collider Segment

 10 arcs separated vertically in one tunnel

 5 TeV $\mu^+\mu^-$ Collider
 1 km radius $<L>\sim 5E34$

 (Muons, Inc. version)
Muon Facility Examples:

- Neutrino Factory:
 (Feasibility Study-II)

 Induction linac No.1
 100 m
 drift 20 m
 Induction linac No.2
 80 m
 drift 30 m
 Induction linac No.3
 80 m
 recirculator Linac
 2 – 20 GeV

 neutron beam

- Common features:
 1. p on tgt $\rightarrow \pi \rightarrow \mu$, collected in focusing channel
 2. μ cooling, acceleration, & storage
 - then:
 3. neutrino beam via $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e$ – or – $\mu^+ \mu^-$ collisions

- $\mu^+\mu^-$ collider:
 (Muons, Inc. version)

 5 TeV $\mu^+\mu^-$ Collider
 1 km radius, $<L> \sim 5 \times 10^{34}$

 2.5 km Linear Collider Segment
 2.5 km Linear Collider Segment

 $\mu^+ \leftarrow$ postcoolers/preaccelerators μ^-

 storage ring
 20 GeV

 target
 mini-cooling
 3.5 m of LH, 10 m drift
 bunching 56 m
 cooling 108 m

 Linac 2 GeV

 proton driver

 10 arcs separated vertically in one tunnel

 300kW proton driver

 Tgt

 H C C
“A Brief History of Muons”

- Muon storage rings are an old idea:
 - Charpak et al. \((g - 2)\) (1960), Tinlot & Green (1960), Melissinos (1960)

- Muon colliders suggested by Tikhonin (1968)

- But no concept for achieving high luminosity until ionization cooling

- Realization (Neuffer and Palmer) that a high-luminosity muon collider might be feasible stimulated series of workshops & formation (1995) of Neutrino Factory and Muon Collider Collaboration
 - has since grown to 47 institutions and >100 physicists

- Snowmass Summer Study (1996)
 - study of feasibility of a 2+2 TeV Muon Collider [Fermilab-conf-96/092]

- See also:
 - Neutrino Factory Feasibility Study I (2000) and II (2001) reports;
 - Recent Progress in Neutrino Factory and Muon Collider Research within the Muon Collaboration, Phys. Rev. ST Accel. Beams 6, 081001 (2003);
 - APS Multidivisional Neutrino Study, www.aps.org/neutrino/ (2004);
 - Recent innovations in muon beam cooling, AIP Conf. Proc. 821, 405 (2006);
Muon Cooling – The Challenge:

\[\tau_\mu = 2.2 \, \mu s \]

Q: What cooling technique works in microseconds?
Muon Cooling – The Challenge:

\[\tau_\mu = 2.2 \ \mu s \]

Q: What cooling technique works in microseconds?

A: There is only one, and it works only for muons:
Muon Cooling – The Challenge:

\[\tau_\mu = 2.2 \, \mu s \]

Q: What cooling technique works in microseconds?
A: There is only one, and it works only for muons:

Ionization Cooling:

\[\mu \rightarrow \frac{\text{d}E}{\text{d}x} \rightarrow \frac{\text{d}E}{\text{d}x} \rightarrow \frac{\text{d}E}{\text{d}x} \rightarrow \text{r.f.} \rightarrow \text{r.f.} \rightarrow \text{r.f.} \]

A. N. Skrinsky and V. V. Parkhomchuk, Sov. J. Part. Nucl. 12, 223 (1981)

→ A brilliantly simple idea!
Ionization Cooling:

- Two competing effects:

 - Absorbers:
 \[E \to E - \langle \frac{dE}{dx} \rangle \Delta s \]
 \[\theta \to \theta + \theta_{\text{rms}} \]

- RF cavities between absorbers replace \(\Delta E \)

- Net effect: reduction in \(p_\perp \) at constant \(p_\parallel \), i.e., transverse cooling

\[
\frac{d\epsilon_N}{ds} = -\frac{1}{\beta^2} \langle \frac{dE_\mu}{ds} \rangle \epsilon_N + \frac{\beta_\perp (0.014 \text{ GeV})^2}{2 \beta^3 E_\mu m_\mu X_0}
\]
Ionization Cooling:

- Two competing effects:

- Absorbers:
 \[E \rightarrow E - \left(\frac{dE}{dx} \right) \Delta s \]
 \[\theta \rightarrow \theta + \theta_{\text{rms, space}} \]

- RF cavities between absorbers replace \(\Delta E \)

- Net effect: reduction in \(p_\perp \) at constant \(p_\parallel \), i.e., transverse cooling

\[
\frac{d\epsilon_N}{ds} = -\frac{1}{\beta^2} \langle \frac{dE_\mu}{ds} \rangle \frac{\epsilon_N}{E_\mu} + \frac{\beta_\perp (0.014 \text{ GeV})^2}{2\beta^3 E_\mu m_\mu X_0} \Rightarrow \text{want strong focusing, large } X_0 \text{ (low } Z), \text{ and low } E_\mu
\]

→ How can this be achieved...?
E.g., Double-Flip Cooling Channel

V. Balbekov & D. Elvira (FNAL)

• To get low $\beta \rightarrow$ big S/C solenoids & high fields!

⇒ expensive
Various lattice designs have been studied:

- **Alternating Solenoid**
 - $B_z(\text{max}) = 3.4$ (T)
 - $\frac{dB_z}{dz(\text{max})} = 15$ (T/m)

- **FOFO**
 - $B_z(\text{max}) = 3.4$ (T)
 - $\frac{dB_z}{dz(\text{max})} = 9.4$ (T/m)

- **Super FOFO**
 - $B_z(\text{max}) = 2.6$ (T)
 - $\frac{dB_z}{dz(\text{max})} = 7$ (T/m)

→ Alternating gradient allows low β with much less superconductor
Example: APS 6-Month Neutrino Study Cooling Channel

R. Palmer (BNL) et al.
Example: APS 6-Month Neutrino Study Cooling Channel

- Performance:

 - SC coil: 106 A/mm²
 - rf cavity: 201.25 MHz
 - 15.25 MV/m
 - LiH 1 cm³
 - Be 25 μm
 - (Absorbers integrated with cavity windows)
 - ±2.8 T
 - Cooling channel (80 m)

R. Palmer (BNL) et al.
Example: APS 6-Month Neutrino Study Cooling Channel

- **Performance:**

→ 80m “FS2a” cooling channel shrinks $\varepsilon_T \times 7.1/15.0 \approx 0.5$, & increases μ/p-on-tgt $\times 0.176/0.10 \approx 1.8$
Example: APS 6-Month Neutrino Study Cooling Channel

- **Performance:**

→ 80m “FS2a” cooling channel shrinks $\varepsilon_T \times 7.1/15.0 \approx 0.5$, & increases μ/p-on-tgt $\times 0.176/0.10 \approx 1.8$ \[\Rightarrow \text{Cost-effective for NF}\]
Longitudinal Cooling?

• Transverse ionization cooling self-limiting due to longitudinal-emittance growth, leading to particle losses
 – caused e.g. by straggling plus finite dE acceptance of cooling channel
 ⇒ need longitudinal cooling for muon collider; could also help for νF

• Possible in principle by ionization (at momenta above ionization minimum), but inefficient due to straggling and small slope $d(dE/dx)/dE$

→ Emittance-exchange concept:

- Promising paper designs exist, e.g.,...
Some 6D Cooling Approaches

"Tetra" ring (Balbekov)

The Two Cell Dipole only Ring (Garren & Kirk)

RFOFO ring (Palmer)

"Guggenheim" version (Klier)

RFOFO Ring Performance:

![Graph showing ring performance with different window types](image_url)
Recent work by R. Johnson, Ya. Derbenev, et al. (Muons, Inc.) points to possibility of cooling + emittance exchange in helical focusing channel (solenoid + rotating dipole and quadrupole) filled with dense low-Z gas or liquid.
Helical Cooling Channel Performance example:

\(\lambda = 1.0 \text{ m} \quad \lambda = 0.8 \text{ m} \quad \lambda = 0.6 \text{ m} \quad \lambda = 0.4 \text{ m} \)

Transverse emittance (rad m)

Longitudinal emittance (m)

6-Dimensional emittance (m^3)

z (m)
Helical Cooling Channel Performance example:

\(\lambda = 1.0 \text{ m} \quad \lambda = 0.8 \text{ m} \quad \lambda = 0.6 \text{ m} \quad \lambda = 0.4 \text{ m} \)

- \(10^5\) 6D-emittance reduction in 160 m
- Ideas for further cooling under investigation
- Suggests feasibility of cooling muons well enough to accelerate them in ILC cavities!
- Muon Collider could be ILC energy upgrade
Helical Cooling Channel Performance example:

- 10^5 6D-emittance reduction in 160 m
- Ideas for further cooling under investigation
- Suggests feasibility of cooling muons well enough to accelerate them in ILC cavities!
- Muon Collider could be ILC energy upgrade

→ International Lepton Collider!
After cooling $\times \sim 10^5$ by series of helical channels ($\sim 10^2$ m), can cool beam further with 2 new approaches:

- Parametric-resonance Ionization Cooling (PIC)

- Reverse Emittance Exchange (REMEX):
Ongoing Studies

• International Scoping Study:
 – year-long international (Europe, Japan, US) study spearheaded by UK
 – launched at NuFact05 Workshop (Frascati, Italy
 – goals: evaluate the physics case for a future neutrino facility along with options for the
 accelerator complex and detectors)
 – results shown at NuFact06 Workshop (Irvine, CA, August ’06)
 – written report in progress
 – intended to lead to international, multi-year design study
 – website: http://www.hep.ph.ic.ac.uk/iss/

• Muon Collider Task Force:
 – group based at Fermilab holding regular meetings to explore options for a Muon Collider

• Also ongoing program of hardware prototyping and testing by Neutrino Factory and Muon Collider Collaboration, e.g.,...
RF Cavity R&D
(ANL, LBNL, FNAL, IIT, JLab, UMiss)

- Muon Cooling calls for high-gradient, moderate-frequency, normal-conducting RF cavities operable in high focusing magnetic fields
- Tests in progress at MuCool Test Area (MTA) near Fermilab Linac with full-scale and 1/4-scale closed-cell (pillbox) cavities (with novel Be windows)

Prototype 201-MHz cavity

Feasibility Demonstrations:

1. Multi-MW targets: MERIT @ CERN nTOF facility

2. Transverse ionization cooling: MICE @ RAL ISIS synchrotron

3. 6D helical cooling: MANX proposal

4. Non-scaling FFAG acceleration: EMMA @ DL
MERIT (MERcury Intense Target):
H. Kirk (BNL), K. McDonald (Princeton), et al.

- Proof-of-principle demonstration of Hg-jet target for 4-MW proton beam, contained in a 15-T solenoid for maximal collection of soft secondary pions

Key parameters:
- 24-GeV p beam, ≤ 8 bunches/pulse, up to $7 \times 10^{12} p$/bunch
- σ_r of proton bunch = 1.2 mm, beam axis at 67 mrad to magnet axis
- Hg jet of 1 cm diameter, $v = 20$ m/s, jet axis at 33 mrad to magnet axis
- Each proton intercepts the Hg jet over 30 cm = 2 interaction lengths

Timetable:
- 2003: LOI’s to CERN and JPARC
- 2004: Proposal to CERN; contract let to fabricate 15-T LN$_2$-cooled NC magnet
- 2005: MERIT approved by CERN
- 2006: Commission magnet at MIT
 - Fabricate mercury delivery system and test with magnet at MIT
 - Fabricate cryogenic system
- 2007: Install experiment at CERN (nTOF area) and run
MICE (Muon Ionization Cooling Experiment)

A. Blondel (U. Genève), M. S. Zisman (LBNL), et al. (www.mice.iit.edu)

• **Goals:**

1. show feasibility of cooling channel giving desired performance for a Neutrino Factory;
2. operate in μ beam, measure performance in various modes and beam conditions.

• **Large international, interdisciplinary collaboration:**
 – >100 particle and accelerator physicists and engineers from Belgium, Bulgaria, China, Italy, Japan, Netherlands, Russia, Switzerland, UK, USA
Avatars of MICE

- Measurement precision relies crucially on precise calibration & thorough study of systematics:

 Phase 1 (fully funded)

 - **STEP I: 2007**
 - Characterize beam
 - Calibrate Spect. 1

 - **STEP II**
 - Intercalibrate Spect. 2 w.r.t. Spect. 1; demonstrate 0.1% emittance measurement

 - **STEP III**
 - Study 1st abs./focus-coil pair; check dE/dx and scattering

 - **STEP IV: 2008**
 - Cooling study w/1/2 lattice cell

 - **STEP V**
 - Cooling study w/full lattice cell & realistic field flip

 - **STEP VI**

- **Phase 2 (in negotiation)**

 - **STEP I: 2007**
 - Characterize beam
 - Calibrate Spect. 1

 - **STEP II**
 - Intercalibrate Spect. 2 w.r.t. Spect. 1; demonstrate 0.1% emittance measurement

 - **STEP III**
 - Study 1st abs./focus-coil pair; check dE/dx and scattering

 - **STEP IV: 2008**
 - Cooling study w/1/2 lattice cell

 - **STEP V**
 - Cooling study w/full lattice cell & realistic field flip

 - **STEP VI**
MANX (Muon collider And Neutrino factory eXperiment)

R. Johnson (Muons, Inc.) et al.

- Proposed follow-on to MICE:
 - insert LHe-filled helical-channel segment between MICE spectrometers
- Obtain large cooling factor (~0.5) in few m using graded B fields to match decreasing p_μ
- Optimization under study
- Proposal submitted to Fermilab (May 2006) to design and build helical magnet
EMMA (Electron Model of Muon Accelerator)
R. Edgecock (RAL) et al.

- APS Neutrino Study FS2a proposed novel, non-scaling FFAG for muon acceleration
 - constant B field allows rapid acceleration
 - “out”- + “in”-bends give large momentum acceptance
 - new idea: “stochastic” acceleration between buckets
 - costs seem lower than RLA or scaling FFAG

- Proof of principle demo proposed at Daresbury
- International collaboration
- Have completed:
 - lattice design
 - tracking studies
 - hardware specs
 - hardware outline design
 - costing

- Funding:
 - UK Basic Technology program
 - 2 rounds; “highly ranked” in 1st
 - 2nd round: submitted 27th July
 - funding hoped ~ start 2007
 - 1st beam before end 2009
Outlook

Crystal ball slightly hazy, but...
Outlook

Crystal ball slightly hazy, but...

• Around 2010, should know
 – whether \exists low-mass Higgs &/or SUSY
 ⇒ whether ILC will proceed
 – cost & feasibility of ν Factory & μ Collider

• Will be ready to proceed with final design & construction of one or both of these muon facilities

• Each appears to be considerably cheaper than ILC

• Either or both could be operational before 2020
Summary

• Muon storage rings are potentially a uniquely powerful option for future HEP facilities

• After much R&D, muon cooling looks feasible
 – both in transverse and longitudinal phase planes

• Coming demonstration experiments should establish this by ~2010

• New techniques could yield muon emittances comparable to ILC values

• Future looks bright for muon colliders and neutrino factories!
Pressurized vs. Vacuum Cavities
(FNAL, IIT, Muons Inc.)

- Solenoidal B-field demonstrated to degrade vacuum-cavity performance

- Pressurizing the cavity helps! (Paschen effect)