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1. Introduction
∗ Motivation (based on inflation universe)'

&

$

%

? The initial fluctuation of quantum geometry will be expanded to
macroscopic scale. ↓
? Effects of quantum gravity(QG) are found on the large angular scale
in anisotropies of CMB. ↓

Numerical Simulation of QG → generates CMB anisotropies?

“Primordial” fluctuation of quantum field
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G. Hinshaw, et.al.,astro-ph/0603451.

We study properties of fluctuation of quantum geometry with numerical
method, and compare to observations.
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1.1. Problems on 4D QG
In order to discuss 4D QG,
we should resolve following problems,

• Renormalizable field theory

• Unitarity

• · · ·

The fluctuation of space-time should be discussed.

? Analytical approach · · · 4D conformal gravity
(presented by K. Hamada).

. Background independent formulation with conformal and tensor
fields.
? Numerical approach · · · 4D simplicial quantum gravity (this talk).

. Lattice quantization
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1.2. Lattice Quantization of QG
? Origin of our study · · · How to quantize QG?¾

½

»

¼
“Generally” quantum field theory

→ Lattice regularization on Feynman path-integral quantization.
· QCD ↔ Lattice QCD
· QG ↔ Dynamical Triangulation, Regge Calculus,...

Constructive definition of quantum field theory on discretized manifold with
keeping the gauge covariance.

? Dynamical Triangulation
Discretized manifold can be
build with d-dim triangles (d-
simplex), so-called Simplicial
Quantum Gravity (SQG).

Baby Universe

BlackHole

Gravitational Wave

graviton

Quantization of Gravity
gµν

d[gµν ]e - S (gµ ν )

"Discretize"
Lattice Fomulation

Triangle Configration
~ Metric Qunatum Fluctuation

∑
T

e - S (T )

It is possible to realize Quantum Geometry in the COMPUTER.



Oct. 30, 2006 Numerical Model of the CMB anisotropies -Simplicial Quantum Geometry- Page 4

1.3. Previous Results of SQG
Correspondence to analytical estimations,

• 2-dimensional case,

· Correspondence to 2-dimensional confor-
mal field theory and matrix model.

• 4-dimensional case,

· Continuous phase transition (required for
continuous limit),

· Correspondence to 4-dimensional confor-
mal gravity.
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S. H., H. S. Egawa and T. Yukawa,
Prog. Theor. Phys. 108 (2002).We consider ...

? 4D SQG · · · Possibilities for quantization of gravity.
? The primordial fluctuation on SQG can be compared with observations.
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1.4. Methodology

1. Build discretized surface with open topology (' Dd)

Compare to corresponding models,

• 2-dimensional model ↔ Liouville field theory with a
boundary V. Fattev, A. Zamolodchikov and Al. Zamolodchikov, hep-th/0001012.

Abulk =
1

4π

∫
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ab
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2bφ
]√

ĝd
2
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1

2π

∫
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QK̂φ + 2πµ

B
e

bφ
]

ĝ
1/4

dξ,

R̂ : scalar curvature, K̂ : scalar curvature of the boundary

Q(= b + 1/b) : background charge

• Matrix model
E. Brezin, C. Itzykson, G. Parisi and J. B. Zuber,
Comm. Math. Phys. 59 (1978) 35.

2. Grasp S2 manifold on equal-time surface (only for 4-
dimensional case)

3. Compute 2-point correlation function of scalar curvature
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2. Model -How to make a universe-
Constructing d-dimensional manifold with open topology Dd−1,
Dynamical Triangulation · · · Fix link length a and change connections be-
tween lattice sites.
(Regge Calculus · · · Change link length a and fix connections between lattice sites.)

Summing up all possible configurations (universe), the connections between
sites are changed by triangulation moves.
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2.1. [∆V, ∆S]-moves
4 Triangulation moves : (V, S) → (V + ∆V, S + ∆S)

V : Volume, number of triangles N2.
S : Peripheral length, number of boundary link Ñ1.

∗ 2D case

Any possible universe · · · ? Creating from simplest triangle,
? Equally probable,

→ Quantization rule.
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2.2. Generating Markov chain
Constructing a Markov chain under the detailed balance condition, select
one of na possible moves at configuration a with given probability pa.

Detailed balance condition for transition probability wa↔b,
pama

na

wa→b =
pbmb

nb

wb→a,

ma : The rotational multiplicity of the configuration a (symmetric factor).
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2.3. Action and Higher-dimensional case
∗ 2D case
The Metropolis Monte-Carlo method is carried out with action,

S = µN2 + µBÑ1, (pa = exp(−S(a))) ,

µ : lattice cosmological constant, µB : lattice boundary cosmological constant,
N2 : volume triangle number, Ñ1 : boundary link number.

∗ 4D case
Starting with a 4-simplex the Monte-Carlo sim-
ulation is carried out for the partition function
by constructing a Markov chain under the de-
tailed balance condition accepting moves which
fulfill the manifold conditions in exactly the
same manner as the 2-dimensional simulation.

S = µN4 + µBÑ3 + κN2 + κBÑ1,

κ : lattice gravitational constant, κB : lattice boundary boundary gravitational constant.
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2.4. Numerical Simulation

• 1-Configuration measurement,

Trace the configuration along the Markov chain.

• Ensemble average,

Sum up all configurations.
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3. Numerical Results
As a practical test, we perform 2-dimensional model.
2-dimensional model consists following parameters,

• The lattice cosmological constant µ,
• The lattice boundary cosmological constant µB.
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Tri-critical Point µc=1.1246(1), µB
c=0.837(1) Three phases are found as,

• Expanding Phase at µ < µc, µ
B < µB

c ,

Bulk · · · Expanding, Boundary · · · Expanding

• Elongating Phase at µB > µB
c ,

Bulk · · · Expanding, Boundary · · · Shrinking

• Collapsing Phase at µ > µc.

Bulk · · · Shrinking

The value of the tri-critical point corresponds to the estimation of
matrix model (µc = 1.1246, µB

c = 0.8367).
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2.1. Corresponding model
Numerical results suggest the partition function of 2-dimensional dynamical
triangulation model on D2 is corresponding to the matrix model and 2-
dimensional conformal field theory with a boundary.

Matrix model ⇔ DT on D2
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For pure gravity with central charge cL = 26, it is known to be b2 =
2/3 ∼ 0.67, while the numerical estimation is b2 = 0.6(2).
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2.2. Physical time -Statistical Sense-
∗ Diffusion time τ ↔ Physical time t
A definition of the physical time can be found in the trivial relationship
between the volume and the area of a universe,

V (t) = c
∫ t

0
S(t′)dt′,

where the constant c is the ratio of length scale and time scale.
Above relation can be rewritten in terms of τ as

ct =
∫ τ

0

1

S(τ ′)

dV (τ ′)

dτ ′ dτ ′.

Simulations in the expanding phase show the
surface area increases approximately propor-
tional to the volume as,

V (τ) ' aS(τ).
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Thus, from the definition of the physical time, we obtain

t = c−1a log {S(τ)/S(0)} ,

or S(t) = S(0)ect/a, exhibiting the exponential expansion of the universe.
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We can also define the physical time on the discretized Dd under the sta-
tistical sense.
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2.3. Correlation Function
In terms of the distance, we can measure the correlation function between
points on the boundary hyper-surface.
The Liouville theory predicts the two point correlation function of the
boundary primary operator Bβ(x) = exp{βφ(x)} to be

〈Bβ(0)Bβ(x)〉 ∼ 1

|x|2∆β
,

where ∆β = β(Q − β).

Assuming Bβ(x) for β = b corresponded
to the coordination number of a bound-
ary vertex in the simplicial space, we mea-
sured the correlation function of coordi-
nation numbers of two vertices on the
boundary.
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? Long range correlation
· At the 1-configuration measurement, the anisotropy fluctuation pattern
of the long range correlation is found.
· The two point correlation function averaged over an ensemble of universes
shows the long range correlation specific is wiped out after averaging over.

∗ 1-Configuration measurement
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∗ Ensemble average
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According to our model, numerical results suggest
? Accidental creation of a seed universe by quantum fluctuation,
? Random expansion of space by accumulations of elementary units.



Oct. 30, 2006 Numerical Model of the CMB anisotropies -Simplicial Quantum Geometry- Page 17

The pattern of super-long distance fluc-
tuation seems to be conserved in some
degree during the expansion as we have
imagined in analogy to a picture on an
inflating balloon.
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We also calculate the angular power spec-
trum of the two point correlation function
defined by |al|2 with

al =
∫

dθPl(cos θ)f(cos θ),

where θ = x/r(τ) is the ratio of geodesic
distance and the peripheral length at τ .
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4. 4-dimensional case§̈ ¥¦Success of 2-dimensional model → apply for 4-dimensional model?

4-dimensional model consists following parameters,
· The lattice cosmological constant µ,
· The lattice boundary cosmological constant µB,
· The lattice gravitational constant κ,
· The lattice boundary gravitational constant κB.

For taking the continuous limit, the continuous phase transition at the
critical point µc, µB

c , κc, κ
B
c is required.

From the Monte-Calro simulations, we found 5-type phases as,

• Expanding Phase (µ < µc),

– Expanding Phase (middle-speed-expansion) (κB < κB
c ),

– Expanding Phase (low-speed-expansion) (κ < κc),

• Collapsing Phase (µ > µc),

• Elongating Phase (µB > µB
c ).
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Three kinds of universes similar to the 2-
dimensional case are observed by varying
µ and µB while two parameters, κ and
κB, are fixed to be zero.

In the expanding phase, three kinds
expansion ratio V/S are found,
· V/S ∼ 0.5 · · · Expanding Phase,
· V/S ∼ 0.46 · · · Expanding Phase
(Middle-Speed-Expansion),
· V/S ∼ 0.34 · · · Expanding Phase.
(Low-Speed-Expansion)
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2.1. Correlation Function
As 2-dimensional model, we measure the curvature-curvature
2-point function on the boundary S2.
In order to define the LSS on discretized manifold D4, we
extract a sectional universe in S3.

The two point correlation function is defined by

f(x) =
1

Ñ2

Ñ2∑

i=1

1
ñ2(i, x)

∑

j(i,x)

(Ri − R̄)
R̄

(Rj − R̄)
R̄

,

where Ri and R̄ are the scalar curvature at a triangle i and
the average over {j(i, x)} of ñ2(i, x) triangles.

The pattern of super-long distance fluctuation
seems to be conserved in some degree during
the expansion as 2-dimensional model.
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? Comparing to WMAP observations (preliminary),
(For comparison, we compute the 2-point correlation function of the temperature on the

mesh division of the WMAP observation [http://lambda.gsfc.nasa.gov/].)
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When we measure the two-point correlation function (selecting one
universe as COBE and WMAP observations did), it exhibits significant
super-long distance correlation.
(The long range correlation specific in each universe is wiped out after
averaging over the ensemble.)
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5. Summary and Future problems

• Numerical Development to realize the quantum geometry with a open
boundary Dd

• Monte-Calro simulation for 2D and 4D model

• Correspondence to 2-dimensional Liouville theory and matrix model

• Phase structure

2D · · · Expanding / Collapsing / Elongating

4D · · · 3-Expanding / Collapsing / Elongating

• 2-point correlation function

Short distance · · · quantum correlation

Long distance · · · expanding pattern
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Future problems,

• Statistical accuracy and parameter dependence,

• Matter degrees of freedom,

• Coordinate and the ratio of length scale and time scale,

• Phase transition,

• n-point correlation function (3-point,...),

• Check with the theoretical analysis,

• · · ·.¶
µ

³
´

Numerical Tool for QG
⇒Open the possibilities to analyze very early stage of universe with
Dynamical Triangulation algorithms.

We must confess the goal is far away and high above, but worth challenging.

Thank you for listening !


