Final Results of K2K

Takanobu Ishii (KEK) for the K2K Collaboration

Honolulu Oct. 31,2006

K2K Collaboration

JAPAN: High Energy Accelerator Research Organization (KEK) / Institute for Cosmic Ray Research (ICRR), Univ. of Tokyo / Kobe University / Kyoto University / Niigata University / Okayama University / Tokyo University of Science / Tohoku University
KOREA: Chonnam National University / Dongshin University / Korea University / Seoul National University
U.S.A.: Boston University / University of California, Irvine / University of Hawaii, Manoa / Massachusetts Institute of Technology / State University of New York at Stony Brook / University of Washington at Seattle
POLAND: Warsaw University / Solton Institute
Since 2002
JAPAN: Hiroshima University / Osaka University
U.S.A.: Duke University

ITALY: Rome FRANCE: Saclay SPAIN: Barcelona / Valencia SWITZERLAND: Geneva RUSSIA: INR-Moscow

K2K experiment

Study the atmospheric neutrino anomaly

Key Issues of K2K

K2K is the first long-baseline neutrino experiment

- Precise neutrino beam aiming
- Beam control and monitoring at the near site
- Extrapolation from the near to the far site
- Gigantic far detector (SK)
- Timing synchronization between near and far

Overview of the K2K experiment

Beam Line and Beam Monitors

Near Detectors

- 1KT: water cherenkov detector
- SciFi: scintillating fiber and water target
- LG: Lead glass calorimeter (removed in 2002)
- SciBar: fully-active scintillator detector (installed in 2003)
- MRD: Iron absorbers and drift tubes

Super-Kamiokande (Far detector of K2K)

39.3m

Beam Aiming

- Beam line was aligned by a long-baseline GPS survey between KEK and Kamioka. (precision 0.01mrad)
- Construction precision at the near site is better than 0.1mrad.
- Beam direction is monitored by MUMON and controlled.
- Delivered neutrino beam direction is monitored and confirmed by MRD to be within 1mrad.

Direction monitor by MUMON

At the start of every beam period, beam direction is controlled by tuning the beam-line magnets while looking at the muon-profile center by MUMON.

1mm shift of protons at the target causes about -0.5mrad deflection for muons

v spectrum stability confirmed by MRD

Εμ (**MRD**)

θμ **(MRD)**

Muon energy and angle distribution measured by MRD is stable.

This confirms the v spectrum stability.

Delivered Protons On Target

Jun. 1999 – Nov. 2004

POT for analysis : 9.22x10¹⁹POT

ND Measurements

ND neutrino measurement

Flux measurement

- 1KT (same target and detection technique as SK)

$$N_{SK}^{\exp} = N_{1KT}^{obs} \bullet \frac{\int \Phi_{SK}(E_{\nu})\sigma(E_{\nu})\varepsilon_{SK}(E_{\nu})dE_{\nu}}{\int \Phi_{1KT}(E_{\nu})\sigma(E_{\nu})\varepsilon_{1KT}(E_{\nu})dE_{\nu}} \bullet \frac{M_{SK}}{M_{1KT}}$$

- Spectrum measurement
 - -1KT (high efficiency at low Ev)
 - Fully contained 1-ring μ -like sample (QE enriched)
 - SciFi+MRD (high efficiency at high Ev)
 - 1track, 2track QE and 2track nonQE samples
 - SciBar+MRD (high efficiency at high Ev)
 - 1track, 2track QE and 2-track nonQE samples

QE and nQE separation in SciFi

(pµ, θ µ) for 1-ring µ-like sample (1KT), 1track, 2track QE and 2track nonQE sample (SciFi, SciBar)

 $\rightarrow \Phi(Ev)$, nonQE/QE ratio

Neutrino spectrum fit results at ND

Fit result of neutrino spectrum

18

Far/Near Ratio

Neutrino spectrum and the far/near ratio

F/N ratio is not simply $1/r^2$, but depends on E_V

PIMON Measurement of (P π , $\theta\pi$)

HARP experiment @ CERN

HARP, Pion monitor and MC comparison

Measurement at the Far site

SK event summary

ring counting likelihood dist. for SK-II atmospheric v

PID likelihood, Sub-GeV, 1-ring even

K2K-I(47.9×10¹⁸POT), K2K-II(44.3×10¹⁸POT)

112 FC events are observed 158.1 +9.2 / - 8.6 events are expected (no osc.).

Reconstructed Ev for 1Rµ Events

Oscillation Analysis

v_{μ} disappearance fit result

(physical) (all region) Best fit : $(\Delta m^2, \sin^2 2\theta) = (2.75 \times 10^{-3}, 1.0)$ (2.55×10⁻³, 1.19)

Published in Phys. Rev. D 74, 072003 (2006)

Comparison of K2K-I and K2K-II Results

Comparison of Number and Spectrum Results

Both number of events and spectrum distortion indicate same oscillation parameters.

v_e appearance analysis

Event selection for v_e appearance search

—K2K-1—	νμ ΜC	beam ve	Data
FCFV	81.1	0.81	55
Single ring	50.92	0.47	33
Tight e-like cut	2.66	0.40	3
Evis > 100 MeV	2.47	0.40	2
No decay-e	1.90	0.35	1
Pi0 cut	0.58	0.17	0
			
—K2K-2—	νμ ΜC	beam ve	Data
—K2K-2— FCFV	νμ MC 77.4	beam ve 0.86	Data 57
—K2K-2— FCFV Single ring	νμ MC 77.4 49.41	beam ve 0.86 0.52	Data 57 34
—K2K-2— FCFV Single ring Tight e-like cut	νμ MC 77.4 49.41 3.21	beam ve 0.86 0.52 0.44	Data 57 34 5
—K2K-2— FCFV Single ring Tight e-like cut Evis > 100 MeV	νμ MC 77.4 49.41 3.21 2.93	beam ve 0.86 0.52 0.44 0.44	Data 57 34 5 5
—K2K-2— FCFV Single ring Tight e-like cut Evis > 100 MeV No decay-e	νμ MC 77.4 49.41 3.21 2.93 2.17	beam ve 0.86 0.52 0.44 0.44 0.39	Data 57 34 5 5 5 4

Both opening angle and ring pattern are required to be e-like.

In total, #expected BG = $\frac{1.70}{4}$ #observed = $\frac{1}{1}$

Exclude region for v_e appearance search

Published in Phys. Rev. Lett. 96, 181801 (2006)

Conclusion

- K2K has proved the crucial principles of a long-baseline neutrino experiment to work
- Decrease and spectrum distortion of muon-neutrinos after traveling hundreds of kilometers is confirmed (4.3σ)
- Allowed region for Δm² (1.9-3.5x10⁻³eV²) at sin²2θ=1 (90%C.L.) is consistent with the atm-ν result
- No evidence for v_e appearance is found $sin^22\theta_{\mu e}$ <0.13 at 2.8x10⁻³eV² (90%C.L.)