Nucleon structure in lattice QCD with dynamical domain-wall fermions

Shigemi Ohta *^{†‡} [RBC and UKQCD DWF intercollaboration]

October 31, 2006, Pacific Particle Physics, Honolulu, Hawaii, USA

RBC and UKQCD collaborations have been producing some dynamical DWF ensembles:

- RBC 2-flavor: DBW2 and DWF, $a^{-1} = 1.7 \text{ GeV}, m_{\text{res}} = 0.00137(5),$
 - $-m_{\rm sea} = 0.04, 0.03, \text{ and } 0.02,$
 - single volume, $16^3 \times 32 \times 12$,
- RBC/UKQCD (2+1)-flavor, Iwasaki and DWF, $a^{-1} = 1.6$ GeV, $m_{\text{res}} = 0.00308(3)$,
 - $-m_{\text{strange}} = 0.04$ and $m_{\text{up,down}} = 0.03, 0.02$, and 0.01,
 - two volumes, $16^3 \times 32 \times 16$ and $24^3 \times 64 \times 16$.

Here we report some nucleon form factors and moments of structure functions.

• With domain wall fermions (DWF) which preserves almost exact chiral symmetry on the lattice,

the non-perturbative renormalization of the relevant currents is simple.

^{*}Inst. Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan

[†]Physic Department, Sokendai Graduate University of Advanced Studies, Tsukuba, Ibaraki 305-0801, Japan [‡]RIKEN BNL Research Center, Upton, NY 11973, USA

The easiest are the vector and axial charges, known from neutron β decay, $g_V = G_F \cos \theta_c$ and $g_A/g_V = 1.2695(29)^1$:

- $g_V \propto \lim_{q^2 \to 0} g_V(q^2)$ with $\langle n | V_\mu^-(x) | p \rangle = i \bar{u}_n [\gamma_\mu g_V(q^2) + q_\lambda \sigma_{\lambda\mu} g_M(q^2)] u_p e^{-iqx}$,
- $g_A \propto \lim_{q^2 \to 0} g_A(q^2)$ with $\langle n | A^-_{\mu}(x) | p \rangle = i \bar{u}_n \gamma_5 [\gamma_{\mu} g_A(q^2) + q_{\mu} g_P(q^2)] u_p e^{-iqx}$.

Structure functions: measured in deep inelastic scatterings (and RHIC/Spin):

- Polarized: $g_1(x, Q^2), g_2(x, Q^2).$
- The same structure functions appear in RHIC/Spin (which also provides $h_1(x, Q^2)$).

 $^{^1{\}rm The}$ Particle Data Group.

Moments of the structure functions are accessible on the lattice:

$$2\int_{0}^{1} dx x^{n-1} F_{1}(x,Q^{2}) = \sum_{q=u,d} c_{1,n}^{(q)}(\mu^{2}/Q^{2},g(\mu)) \langle x^{n} \rangle_{q}(\mu) + \mathcal{O}(1/Q^{2}),$$

$$\int_{0}^{1} dx x^{n-2} F_{2}(x,Q^{2}) = \sum_{f=u,d} c_{2,n}^{(q)}(\mu^{2}/Q^{2},g(\mu)) \langle x^{n} \rangle_{q}(\mu) + \mathcal{O}(1/Q^{2}),$$

$$2\int_{0}^{1} dx x^{n} g_{1}(x,Q^{2}) = \sum_{q=u,d} e_{1,n}^{(q)}(\mu^{2}/Q^{2},g(\mu)) \langle x^{n} \rangle_{\Delta q}(\mu) + \mathcal{O}(1/Q^{2}),$$

$$2\int_{0}^{1} dx x^{n} g_{2}(x,Q^{2}) = \frac{1}{2} \frac{n}{n+1} \sum_{q=u,d} [e_{2,n}^{q}(\mu^{2}/Q^{2},g(\mu)) d_{n}^{q}(\mu) - 2e_{1,n}^{q}(\mu^{2}/Q^{2},g(\mu)) \langle x^{n} \rangle_{\Delta q}(\mu)] + \mathcal{O}(1/Q^{2})$$

- c_1, c_2, e_1 , and e_2 are the Wilson coefficients (perturbative),
- $\langle x^n \rangle_q(\mu), \langle x^n \rangle_{\Delta q}(\mu)$ and d_n are forward nucleon matrix elements of certain local operators.

Lattice operators:

• Unpolarized (F_1/F_2) :

$$\frac{1}{2}\sum_{s} \langle P, S | \mathcal{O}_{\{\mu_{1}\mu_{2}\cdots\mu_{n}\}}^{q} | P, S \rangle = 2 \langle x^{n-1} \rangle_{q}(\mu) [P_{\mu_{1}}P_{\mu_{2}}\cdots P_{\mu_{n}} + \cdots - (\text{trace})]$$
$$\mathcal{O}_{\mu_{1}\mu_{2}\cdots\mu_{n}}^{q} = \bar{q} \left[\left(\frac{i}{2}\right)^{n-1} \gamma_{\mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}} - (\text{trace}) \right] q$$

On the lattice we can measure: $\langle x \rangle_q$, $\langle x^2 \rangle_q$ and $\langle x^3 \rangle_q$.

- Higher moment operators mix with lower dimensional ones: operators belonging in irreducible representations of O(4) transform reducibly under the lattice Hyper-cubic group.
- Only $\langle x \rangle_q$ can be measured with $\vec{P} = 0$.

• Polarized (g_1/g_2) :

$$-\langle P, S | \mathcal{O}_{\{\sigma\mu_{1}\mu_{2}\cdots\mu_{n}\}}^{5q} | P, S \rangle = \frac{2}{n+1} \langle x^{n} \rangle_{\Delta q}(\mu) [S_{\sigma}P_{\mu_{1}}P_{\mu_{2}}\cdots P_{\mu_{n}} + \cdots - (\text{traces})]$$
$$\mathcal{O}_{\sigma\mu_{1}\mu_{2}\cdots\mu_{n}}^{5q} = \bar{q} \left[\left(\frac{i}{2}\right)^{n} \gamma_{5}\gamma_{\sigma} \, \overleftrightarrow{D}_{\mu_{1}}\cdots \overleftrightarrow{D}_{\mu_{n}} - (\text{traces}) \right] q$$
$$\langle P, S | \mathcal{O}_{[\sigma\{\mu_{1}]\mu_{2}\cdots\mu_{n}\}}^{[5]q} | P, S \rangle = \frac{1}{n+1} d_{n}^{q}(\mu) [(S_{\sigma}P_{\mu_{1}} - S_{\mu_{1}}P_{\sigma})P_{\mu_{2}}\cdots P_{\mu_{n}} + \cdots - (\text{traces})]$$
$$\mathcal{O}_{[\sigma\mu_{1}]\mu_{2}\cdots\mu_{n}}^{[5]q} = \bar{q} \left[\left(\frac{i}{2}\right)^{n} \gamma_{5}\gamma_{[\sigma} \, \overleftrightarrow{D}_{\mu_{1}}] \cdots \overleftrightarrow{D}_{\mu_{n}} - (\text{traces}) \right] q$$

and transversity (h_1) :

$$\langle P, S | \mathcal{O}_{\rho\nu\{\mu_1\mu_2\cdots\mu_n\}}^{\sigma q} | P, S \rangle = \frac{2}{m_N} \langle x^n \rangle_{\delta q} [(S_\rho P_\nu - S_\nu P_\rho) P_{\mu_1} P_{\mu_2} \cdots P_{\mu_n} + \cdots - (\text{traces})]$$
$$\mathcal{O}_{\rho\nu\mu_1\mu_2\cdots\mu_n}^{\sigma q} = \bar{q} [\left(\frac{i}{2}\right)^n \gamma_5 \sigma_{\rho\nu} \stackrel{\leftrightarrow}{D}_{\mu_1} \cdots \stackrel{\leftrightarrow}{D}_{\mu_n} - (\text{traces})] q$$

- On the lattice we can measure: $\langle 1 \rangle_{\Delta q} (g_A), \langle x \rangle_{\Delta q}, \langle x^2 \rangle_{\Delta q}, d_1, d_2, \langle 1 \rangle_{\delta q}$ and $\langle x \rangle_{\delta q}$.

- Only $\langle 1 \rangle_{\Delta q}$, $\langle x \rangle_{\Delta q}$, d_1 , and $\langle 1 \rangle_{\delta q}$ can be measured with $\vec{P} = 0$.

On the lattice, in general, we calculate the relevant matrix elements of these currents

- with a lattice cutoff, $a^{-1} \sim 1-2$ GeV,
- and extrapolate to the continuum, $a \rightarrow 0$,

introducing lattice renormalization, e.g.: $g_{_{V,A}}^{\text{renormalized}} = Z_{_{V,A}}g_{_{V,A}}^{\text{lattice}}$.

Also, unwanted lattice artefact may result in unphysical mixing of chirally distinct operators.

DWF makes $g_{\scriptscriptstyle A}/g_{\scriptscriptstyle V}$ particularly easy, because:

- the chiral symmetry is almost exact, and
- maintains $Z_{A} = Z_{V}$, so that $g_{A}^{\text{lattice}}/g_{V}^{\text{lattice}}$ directly yields the renormalized value.

And other non-perturbative renormalizations are feasible too, with often negligible unwanted mixings.

So DWF is a powerful tool for calculating nucleon matrix elements on the lattice: RBC had demonstrated this.

Our formulation follows the standard one,

- Two-point function: $G_N(t) = \text{Tr}[(1+\gamma_t)\sum_{\vec{x}} \langle TB_1(x)B_1(0) \rangle]$, using $B_1 = \epsilon_{abc}(u_a^T C \gamma_5 d_b) u_c$ for proton,
- Three-point functions,

$$- \text{ vector: } G_{V}^{u,d}(t,t') = \text{Tr}[(1+\gamma_{t})\sum_{\vec{x}'}\sum_{\vec{x}}\langle TB_{1}(x')V_{t}^{u,d}(x)B_{1}(0)\rangle],$$

$$- \text{ axial: } G_{A}^{u,d}(t,t') = \frac{1}{3}\sum_{i=x,y,z}\text{Tr}[(1+\gamma_{t})\gamma_{i}\gamma_{5}\sum_{\vec{x}'}\sum_{\vec{x}}\langle TB_{1}(x')A_{i}^{u,d}(x)B_{1}(0)\rangle].$$

with fixed $t' = t_{\text{source}} - t_{\text{sink}}$ and t < t'.

• From the lattice estimate

$$g_{\Gamma}^{\text{lattice}} = \frac{G_{\Gamma}^{u}(t,t') - G_{\Gamma}^{d}(t,t')}{G_{N}(t)},$$

with $\Gamma = V$ or A, the renormalized value

$$g_{\scriptscriptstyle \Gamma}^{
m ren} = Z_{\scriptscriptstyle \Gamma} g_{\scriptscriptstyle \Gamma}^{
m lattice},$$

is obtained.

• Non-perturbative renormalizations, defined by

$$[\bar{u}\Gamma d]_{\rm ren} = Z_{\Gamma}[\bar{u}\Gamma d]_0,$$

satisfies $Z_A = Z_V$ well, so that

$$\left(\frac{g_A}{g_V}\right)^{\text{ren}} = \left(\frac{G_A^u(t,t') - G_A^d(t,t')}{G_V^u(t,t') - G_V^d(t,t')}\right)^{\text{lattice}}$$

 $g_{\scriptscriptstyle A}$ is also described as $\Delta u - \Delta d.$

Renormalization: $\mathcal{O}^{\text{ren}} = Z_{\mathcal{O}}(a\mu)\mathcal{O}^{\text{lat}}(a),$

- lattice complications: operator mixing from broken Lorentz or chiral symmetry,
- NPR is required when mixing with lower dimensional operator occurs.

We calculate $Z_{\mathcal{O}}(a\mu)$ non-perturbatively in RI/MOM scheme² with perturbative matching to $\overline{\text{MS}}$.

- compute off-shell matrix element of the operator, \mathcal{O} , in Landau gauge,
- impose a MOM scheme condition Tr $V_{\mathcal{O}}(p^2)\Gamma|_{p^2=\mu^2}\frac{Z_{\mathcal{O}}}{Z_q}=1,$
 - $-V_{\mathcal{O}}(p^2)$ is the relevant amputated vertex,
 - Γ is an appropriate projector,
- extrapolate to the chiral limit, defining the RI scheme,
- in an appropriate window, $\Lambda_{\rm QCD} \ll \mu^2 \ll a^{-1}$, a scale invariant

$$Z_{\rm rgi} = \frac{Z(\mu^2)}{C(\mu^2)}$$

is obtained, with the operator running $C(\mu^2)$ in the continuum perturbation theory.

• Now we can perturbatively match to e.g. \overline{MS} .

Works nicely with DWF.

²Martinelli et. al, Nucl. Phys. B455, 81 (1995).

Rectangular gauge actions such as Iwasaki and DBW2, $S_G = \beta [c_0 \sum W_{1,1} + c_1 \sum W_{1,2}]$, with $c_0 + 8c_1 = 1$, help both:

- good chiral behavior, *i.e.* close enough to the continuum, and
- sufficiently large volume to contain a nucleon.

With quenched DBW2 calculations RBC had demonstrated³:

- $(g_A/g_V)^{\text{lattice}} = (g_A/g_V)^{\text{ren}}$ is strongly volume-dependent.
 - It is not appreciably quark-mass dependent once the volume is sufficiently large,
 - $-g_A/g_V = 1.212(27)_{\text{stat.}}(24)_{\text{syst.}}$, compared with the experiment of 1.2695(29).

- NPR for structure function moments is well-behaved.
- Both $\langle x \rangle_{u-d}$ and $\langle x \rangle_{\Delta u-\Delta d}$ overshoot the experiments by about 50%,
 - but their ratio, again naturally renormalized, agree well with the experiment
 - and again without much appreciable quark-mass dependence.
- $\langle 1 \rangle_{\delta u \delta d} = 1.193(30), \overline{\text{MS}} (2 \text{ GeV}) 2\text{-loop running.}$
- d_1 , though not renormalized yet, appears small in the chiral limit.

³S. Sasaki, K. Orginos, SO, and T. Blum, Phys.Rev.D68:054509, 2003 (hep-lat/0306007); K. Orginos, T. Blum and SO, Phys.Rev.D73:094503, 2006 (hep-lat/0505024).

Here we report on two dynamical DWF ensembles.

- 1. RBC 2-flavor DBW2+DWF dynamical calculations:
 - $a^{-1} = 1.7 \text{ GeV}, m_{\text{res}} = 0.00137(5)$
 - $m_{\text{sea}} = 0.04, 0.03, \text{ and } 0.02,$
 - $m_{\pi} = 700, 610, \text{ and } 490 \text{ MeV}; m_N = 1.5, 1.4, \text{ and } 1.3 \text{ GeV}$ (a few % errors),
 - single volume, $16^3 \times 32 \times 12$,
 - about 220 configurations at each m_{sea} value,

Analysis is almost complete except NPR.

2. RBC/UKQCD (2+1)-flavor, Iwasaki+DWF dynamical calculations:

- $a^{-1} = 1.6 \text{ GeV}, m_{\text{res}} = 0.00308(3),$
- $m_{\text{strange}} = 0.04$ and $m_{\text{up,down}} = 0.03, 0.02$, and 0.01,
- $m_{\pi} = 620, 520$ and 390 MeV; $m_N = 1.4, 1.3, \text{ and } 1.2 \text{ GeV} (10\text{-}20 \% \text{ errors})$,
- two volumes,
 - $-16^3 \times 32 \times 16$, 2 fm across, ensemble production complete, UKQCD analyses ongoing, and
 - $-24^3 \times 64 \times 16$, 3 fm across, ensemble production ongoing, RBC analyses ongoing (24-30 configurations).

Preliminary analysis for the larger volume.

Observables: those not requiring finite momentum transfer

- ratios g_A/g_V and $\langle x \rangle_{u-d}/\langle x \rangle_{\Delta u-\Delta d}$, naturally renormalized,
- d_1 , yet to be renormalized but still interesting.

bare values of the others have been calculated but are waiting for renormalization.

RBC 2-flavor DBW2+DWF dynamical: $a^{-1} = 1.7 \text{ GeV}$, $16^3 \times 32 \times 12$, $m_{\text{res}} = 0.00137(5)$, about 220 configurations, • $m_{\text{sea}} = 0.04$, 0.03, and 0.02; $m_{\pi} = 700$, 610, and 490 MeV; $m_N = 1.5$, 1.4, and 1.3 GeV (a few % errors),

mild quark-mass dependence.

RBC 2-flavor DBW2+DWF dynamical: $a^{-1} = 1.7 \text{ GeV}$, $16^3 \times 32 \times 12$, $m_{\text{res}} = 0.00137(5)$, about 220 configurations, • $m_{\text{sea}} = 0.04$, 0.03, and 0.02; $m_{\pi} = 700$, 610, and 490 MeV; $m_N = 1.5$, 1.4, and 1.3 GeV (a few % errors),

in agreement with experiment, mild quark-mass dependence.

RBC 2-flavor DBW2+DWF dynamical: $a^{-1} = 1.7 \text{ GeV}$, $16^3 \times 32 \times 12$, $m_{\text{res}} = 0.00137(5)$, about 220 configurations,

• $m_{\text{sea}} = 0.04, 0.03, \text{ and } 0.02; m_{\pi} = 700, 610, \text{ and } 490 \text{ MeV}; m_N = 1.5, 1.4, \text{ and } 1.3 \text{ GeV}$ (a few % errors),

appears small, though not renormalized.

RBC/UKQCD (2+1)-flavor, Iwasaki+DWF dynamical, $a^{-1} = 1.6$ GeV, $m_{\text{res}} = 0.00308(3)$, $m_{\text{strange}} = 0.04$,

• $m_{\rm up,down} = 0.03, 0.02, \text{ and } 0.01; m_{\pi} = 620, 520 \text{ and } 390 \text{ MeV}; m_N = 1.4, 1.3, \text{ and } 1.2 \text{ GeV} (10-20 \% \text{ errors}),$

• larger of the two volumes, $24^3 \times 64 \times 16$, 3 fm across, ongoing, preliminary analyses with 25-30 configurations,

 $\label{eq:gamma} \begin{array}{l} \text{consistent with experiment,} \\ g_{\scriptscriptstyle A}/g_{\scriptscriptstyle V} \, = \, 1.32(11), \, \text{despite rather small statistics,} \\ \text{mild quark-mass dependence.} \end{array}$

RBC/UKQCD (2+1)-flavor, Iwasaki+DWF dynamical, $a^{-1} = 1.6$ GeV, $m_{\text{res}} = 0.00308(3)$, $m_{\text{strange}} = 0.04$,

- $m_{\rm up,down} = 0.03, 0.02, \text{ and } 0.01; m_{\pi} = 620, 520 \text{ and } 390 \text{ MeV}; m_N = 1.4, 1.3, \text{ and } 1.2 \text{ GeV} (10-20 \% \text{ errors}),$
- larger of the two volumes, $24^3 \times 64 \times 16$, 3 fm across, ongoing, preliminary analyses with 25-30 configurations,

consistent with experiment, mild quark-mass dependence.

RBC/UKQCD (2+1)-flavor, Iwasaki+DWF dynamical, $a^{-1} = 1.6$ GeV, $m_{\text{res}} = 0.00308(3)$, $m_{\text{strange}} = 0.04$,

- $m_{\rm up,down} = 0.03, 0.02, \text{ and } 0.01; m_{\pi} = 620, 520 \text{ and } 390 \text{ MeV}; m_N = 1.4, 1.3, \text{ and } 1.2 \text{ GeV} (10-20 \% \text{ errors}),$
- larger of the two volumes, $24^3 \times 64 \times 16$, 3 fm across, ongoing, preliminary analyses with 25-30 configurations,

appears small, though not renormalized.

We can combine the 2-flavor and (2+1)-flavor ratios in m_{π}^2 (GeV²) scale:

Conclusions:

- 1. RBC 2-flavor DBW2+DWF dynamical calculations are almost complete:
 - $a^{-1} = 1.7 \text{ GeV}, m_{\text{res}} = 0.00137(5)$
 - $-m_{\rm sea} = 0.04, 0.03, \text{ and } 0.02,$
 - NPR on the way.
 - Ratios, g_A/g_V and $\langle x \rangle_{u-d}/\langle x \rangle_{\Delta u-\Delta d}$, in agreement with experiment, despite rather small volume: - $g_A/g_V = 1.27(5)$,
 - mild quark-mass dependence.
 - d_1 appears small, though not renormalized.

- 2. RBC/UKQCD (2+1)-flavor, Iwasaki+DWF dynamical calculations are ongoing,
 - $a^{-1} = 1.6 \text{ GeV}, m_{\text{res}} = 0.00308(3),$
 - $-m_{\text{strange}} = 0.04$ and $m_{\text{up,down}} = 0.03, 0.02$, and 0.01,
 - the larger, 3-fm across, of the two volumes reported here,
 - preliminary.
 - Ratios, g_A/g_V and $\langle x \rangle_{u-d}/\langle x \rangle_{\Delta u-\Delta d}$, consistent with experiment, despite rather small statistics: - $g_A/g_V = 1.32(11)$,
 - mild quark-mass dependence.
 - d_1 appears small, though not renormalized.