Search for 3rd Generation Vector Leptoquarks in Run II at CDF

Aron Soha (UC Davis) For the CDF Collaboration

DPF + JPS November 1, 2006 Honolulu, Hawaii

Motivation

- Symmetry between quark and lepton sectors suggests a possible link at higher energy scales (e.g. > m_{top})
- Theoretical particle which couples to *quarks* and *leptons*

- Carries baryon and lepton quantum numbers
- Fractional charge
- Color-triplet boson

- Two possible spin structures:
 - Spin 0 (scalar): couplings are fixed and decays are isotropic
- * Spin 1 (vector): anomalous magnetic and electric quadrupole moments *
- Appears in several beyond-the-Standard-Model theories: SU(5) GUT, Superstrings, SU(4) Pati-Salam, Composite, Technicolor

Production at the Tevatron

DPF + JPS 2006

Decay

Existing Limits

- Related CDF Run II limit (322 pb⁻¹)
 - From an R-parity violating stop search $m_{SLQ3} > 155 \text{ GeV/c}^2$

Data & VLQ3 Simulation

• Data

- 322 pb⁻¹, at $\sqrt{s} = 1.96 \text{ TeV}$
- Lepton+Track trigger

Signal MC

- VLQ3 added to GRACE (amplitude calculations)
 - + GR@PPA (computations of primary hadron interactions)
 - + PYTHIA (decay, fragmentation, and showering)+ GEANT (full CDF simulation)

- Calculates helicity amplitudes for LQ pair production and carries through to taus
- Flexible: Can model other LQ generations, and decays to other final states

Backgrounds

Source	Comments	
Physics backgrounds	s (yielding lepton, $\tau_{\rm h}$, + 2 jets)	_,
$-t\overline{t}$	$t \overline{t} \rightarrow WbWb \rightarrow \ell \nu b \tau_h \nu b$	
$- Z^0 / \gamma^* \rightarrow \tau \tau$	+ jets in the event	
Faking backgrounds	(≥1 object is misidentified)	
$-t\overline{t}$	$t\overline{t} \rightarrow WbWb \rightarrow \ell\nu b \; qqb$, and jet fakes a τ_h	
$- Z^0 / \gamma^* \rightarrow e e \text{ or } \mu \mu$	+ jets in the event, e, μ , or 3 rd jet fakes a τ_h	
- W+jets	$W \rightarrow \ell \nu$ and 3 rd jet fakes a τ_h	
- WW, WZ, ZZ	negligible	

- multi-jet QCD	jets fake e/ μ + τ_h evaluated by extrapolating from non-isolated lepton region to isolated region	Ising C
- γ+jets	photon conversions	lata

Event Selection

Efficiencies

Efficiencies

-	$e au_h$	$ \mu \tau_h(\eta_\mu < 0.6)$	$\mu \tau_h (0.6 < \eta_\mu < 1.0)$
Requirement	Efficiency (%)	Efficiency (%)	Efficiency (%)
Particle Selection	7.52 ± 0.08	5.17 ± 0.07	1.84 ± 0.04
Event Selection	81.73 ± 0.19	87.37 ± 0.25	85.83 ± 0.36
Total	6.14 ± 0.07	4.52 ± 0.07	1.58 ± 0.04

Signal and Control Regions

• Define 3 control regions, 1 safety region, and 1 signal region

- H_T > 250 GeV is sensitive to existing limit (m_{VLQ3} > 225 GeV/c²)
- Perform optimized search with highest mass reach by using simultaneous fit to SAFE region and SIGNAL region
- SAFE and SIGNAL regions left "closed" until selection and validation finalized

Validation Using Control Regions

 $\mu \tau_{\rm h}$ channel

• Control and signal region plots of jet multiplicity

 $e\tau_{h}$ channel

Hatched region is uncertainty on summation of backgrounds

ficJ0 $p\bar{p} \rightarrow VLQVLQ \rightarrow (b\tau)(b\tau)$ 250 $\frac{1}{2}$ Number of evtents 250 200 $b\overline{b} \rightarrow VLQ\overline{VLQ} \rightarrow (b\tau)(b\tau)$ CDF Run II Preliminary (322 pb⁻¹) CDF Run II Preliminary (322 pb⁻¹ et, channel μτ, channel - Data ($L=322 \ pb^{-l}$) - Data ($L=322 \ pb^{-1}$) $VLQ\overline{VLQ}(m=320 \text{ GeV/c}^2)$ $VLQ\overline{VLQ}(m=320 \text{ GeV/c}^2)$ Ζ→ττ→ετ, $Z \rightarrow \tau \tau \rightarrow \mu \tau$, OCDQCDZ→ee $Z \rightarrow \mu \mu$ tī W+ jets W+jets γ+jets 150 150 100 100 50 50 n 0 O ≥2 0 1 ≥2 1 Number of jets Number of jets DPF + JPS 2006Aron Soha, UC Davis

H_T for Control and Signal Regions

• H_T for individual backgrounds and example signal at $m_{VLO3}=320 \text{ GeV/c}^2$

Systematics

• Systematic uncertainties on signal, for $m_{VLQ3} = 160, 260, 360 \text{ GeV/c}^2$ et_h channel $\mu \tau_h$ channel

Systematics (%) for $e\tau_h$ Channel					
	m _{LQ3}				
Source	160	260	360		
PDF	2.4	1.1	0.7		
ISR	3.6	3.6	3.6		
FSR	3.7	3.7	3.7		
Jet Scale	7.5	2.8	0.9		
₿ _T	0.1	0.1	0.1		
Acceptance	1.7	1.7	1.7		
Lepton ID	1.0	1.0	1.0		
Tau ID	3.0	3.0	3.0		
Isolation	3.0	3.0	3.0		
Total	10.5	7.6	7.1		

Systematics (%) for $\mu \tau_h$ Channel					
	m _{LO3}				
Source	160	260	360		
PDF	2.7	1.0	0.5		
ISR	3.7	3.7	3.7		
FSR	3.6	3.6	3.6		
Jet Scale	6.9	2.7	0.8		
₿ _T	0.0	0.1	0.0		
Acceptance	1.0	1.0	1.0		
Lepton ID	3.0	3.0	3.0		
Tau ID	3.0	3.0	3.0		
Isolation	3.0	3.0	3.0		
Total	10.4	7.9	7.5		

• Additional systematics include 6% for luminosity, + background systematics

Event Yields

• Expected number of background events in each region, and observed number of events in data

$e\tau_h$ channel

	CR0J	CR1J	CR2J	SAFE	SIGNAL
Background	$122.08^{+2.14}_{-2.14} \pm 11.31$	$109.23^{+2.35}_{-2.35} \pm 9.27$	$33.39^{+1.40}_{-1.39}\pm 4.80$	$3.28^{+0.40}_{-0.27} \pm 0.52$	$0.25^{+0.21}_{-0.06} \pm 0.05$
Data	129	110	36	5	0

$\mu\tau_h \text{ channel}$

	CR0J	CR1J	CR2J	SAFE	SIGNAL
Background	$147.13^{+2.62}_{-2.62} \pm 12.29$	$100.46^{+2.51}_{-2.51}\pm6.74$	$30.58^{+1.62}_{-1.62} \pm 3.83$	$2.25^{+0.32}_{-0.20} \pm 0.32$	$0.24^{+0.22}_{-0.05}\pm 0.05$
Data	129	79	26	3	0

Cross Section and Mass Limits

15

Conclusions

- Searched for the pair production and decay of third generation vector leptoquarks in 322 pb⁻¹ of Run II CDF data, in the di-tau di-jet channel
- Leptoquarks remain undiscovered, but ...
- Placed the world's strongest 95% C.L. limits on the cross section and mass for two models:

	Minimal Couplings	Yang-Mills Couplings
Nominal:	σ < 493 fb, M > 251 GeV/c ²	σ < 344 fb, M > 317 GeV/c ²
-1 o Theory:	$\sigma < 610 \text{ fb}, M > 223 \text{ GeV/c}^2$	σ < 360 fb, M > 294 GeV/c ²

$Backup \rightarrow$

Existing Limits

Validation Using Control Regions (II)

• Number of tau prongs in CR0J control region

DPF + JPS 2006

19

Aron Soha, UC Davis

Event Yields: $e\tau_h$ Channel

• Expected number of events, by category and summed, in each region, and observed number of events in data

$e\tau_h$ channel

	CR0J	CR1J	CR2J	SAFE	SIGNAL
Backgrounds:					
$Z^0 ightarrow au au ightarrow e au_h$	$39.86^{+0.85}_{-0.85}\pm3.22$	$43.02^{+0.88}_{-0.88}\pm3.80$	$9.09^{+0.41}_{-0.41} \pm 1.06$	$0.67^{+0.11}_{-0.11} \pm 0.15$	$0.04^{+0.04}_{-0.02}\pm0.00$
$Z^0 \to ee$	$5.45^{+0.55}_{-0.55}\pm1.12$	$6.62^{+0.61}_{-0.61}\pm1.47$	$1.22^{+0.26}_{-0.26}\pm0.33$	$0.45^{+0.19}_{-0.13}\pm0.10$	$0.00^{+0.06}_{-0.00}\pm0.00$
QCD	$2.83^{+0.47}_{-0.47}\pm0.32$	$22.66^{+1.32}_{-1.32}\pm 5.63$	$15.23^{+1.08}_{-1.08}\pm3.85$	$0.08^{+0.12}_{-0.05}\pm0.00$	$0.00^{+0.08}_{-0.00}\pm0.00$
tī	$0.01^{+0.01}_{-0.0}\pm0.01$	$0.30^{+0.06}_{-0.06}\pm0.07$	$0.81^{+0.09}_{-0.09}\pm0.22$	$1.35^{+0.12}_{-0.12}\!\pm\!0.39$	$0.15^{+0.04}_{-0.04}\pm0.04$
W(e+v) + jets	$53.06^{+1.13}_{-1.13}\pm9.82$	$20.29^{+0.79}_{-0.79}\pm4.87$	$3.51^{+0.35}_{-0.35}\pm1.72$	$0.60^{+0.15}_{-0.15}\pm0.29$	$0.07^{+0.07}_{-0.04}\pm0.03$
$W(\tau + \nu) + jets$	$20.68^{+1.43}_{-1.43}\pm4.43$	$14.90^{+1.37}_{-1.37}\pm3.73$	$2.87^{+0.64}_{-0.64}\pm1.99$	$0.14^{+0.23}_{-0.09}\pm0.08$	$0.00^{+0.14}_{-0.00}\pm0.00$
γ + jets	$0.18^{+0.18}_{-0.09}\pm0.00$	$1.44^{+0.36}_{-0.36}\pm0.29$	$0.66^{+0.07}_{-0.00}\pm0.18$	$0.00^{+0.09}_{-0.00}\pm0.00$	$0.00^{+0.09}_{-0.00}\pm0.00$
Total Background	$122.08^{+2.14}_{-2.14}\pm11.31$	$109.23^{+2.35}_{-2.35}\pm9.27$	$33.39^{+1.40}_{-1.39}\pm4.80$	$3.28^{+0.40}_{-0.27}\pm0.52$	$0.25^{+0.21}_{-0.06}\pm0.05$
Data	129	110	36	5	0

Event Yields: $\mu \tau_h$ Channel

• Expected number of events, by category and summed, in each region, and observed number of events in data

$\mu \tau_h$ channel

	CR0J	CR1J	CR2J	SAFE	SIGNAL
Backgrounds:					
$Z^0 o au au o \mu au_h$	$42.03^{+0.87}_{-0.87}\pm2.91$	$40.10^{+0.85}_{-0.85}\pm2.22$	$8.34^{+0.39}_{-0.39}\pm0.70$	$0.59^{+0.10}_{-0.10}\pm0.06$	$0.09^{+0.05}_{-0.03}\pm0.03$
$Z^0 ightarrow \mu \mu$	$27.06^{+1.19}_{-1.19} \pm 8.45$	$8.39^{+0.66}_{-0.66}\pm2.74$	$2.20^{+0.34}_{-0.34}\pm0.73$	$0.10^{+0.10}_{-0.05}\pm0.04$	$0.00^{+0.05}_{-0.00}\pm0.00$
QCD	$2.30^{+0.56}_{-0.56}\pm0.39$	$16.54^{+1.50}_{-1.50}\pm2.91$	$11.58^{+1.25}_{-1.25}\pm2.05$	$0.00^{+0.13}_{-0.00}\pm0.00$	$0.00^{+0.13}_{-0.00}\pm0.00$
tī	$0.04^{+0.03}_{-0.02}\pm0.00$	$0.32^{+0.06}_{-0.06}\pm0.07$	$0.67^{+0.08}_{-0.08}\pm0.13$	$1.24^{+0.11}_{-0.11}\pm0.29$	$0.15^{+0.04}_{-0.04}\pm0.05$
$W(\mu + \nu) + jets$	$56.60^{+1.59}_{-1.59}\pm7.98$	$21.99^{+1.12}_{-1.12}\pm4.23$	$4.36^{+0.53}_{-0.53}\pm1.74$	$0.31^{+0.18}_{-0.11}\pm0.11$	$0.00^{+0.06}_{-0.00}\pm0.00$
$W(\tau + v) + jets$	$19.11^{+1.37}_{-1.37} \pm 2.71$	$13.13^{+1.28}_{-1.28}\pm2.56$	$3.44^{+0.70}_{-0.70}\pm2.53$	$0.00^{+0.14}_{-0.00}\pm0.00$	$0.00^{+0.14}_{-0.00}\pm0.00$
Total Background	$147.13^{+2.62}_{-2.62}\pm12.29$	$100.46^{+2.51}_{-2.51}\pm6.74$	$30.58^{+1.62}_{-1.62}\pm3.83$	$2.25^{+0.32}_{-0.20}\!\pm\!0.32$	$0.24^{+0.22}_{-0.05}\pm0.05$
Data	129	79	26	3	0