

FCNC Charm Decays

Bill Lee NIU/FNAL

DPF/JPS '06 Halloween 2006

Tevatron

- The Tevatron is a $\sqrt{s=1.96}$ TeV pp collider.
- Since the last shutdown the Tevatron has set many DØ luminosity records including:
 - Instantaneous $L = 2.2 E32/cm^2/s$
 - Daily integrated $L = 6.2 \text{ pb}^{-1}$
 - Weekly integrated $L = 32 \text{ pb}^{-1}$

DØ has just recently passed the 2 fb⁻¹ mark, recording ~85% of delivered luminosity.

31 October 2006

The DØ Run II Detector

The DØ detector is a multipurpose detector with excellent muon and tracking coverage out to $|\eta|=2$. In addition, with the recent shutdown, DØ has added an additional inner layer of silicon and upgraded the track trigger to reduce fakes.

DPF06 - Bill Lee

The D0 Trigger System

D and D_s FCNC Transitions

 $D \rightarrow \mu^+ \mu^- \pi$

- Non-resonant decays
 - GIM suppressed, BF ~ 10^{-8}

- Resonant decays
 - Dominant, BF ~ 10^{-6} μ

 $D_s \rightarrow \mu^+ \mu^- \pi$

- Non-resonant decays
 - penguin and box diagrams are absent
- Resonant decays

- BF ~ 10⁻⁵

- For every rare SM process there is a "beyond the SM" theory in which it is enhanced.
- Strict limits have been set experimentally from $b \rightarrow s$ and $s \rightarrow d$ in the down sector.
 - There is still room to have effects in the up sector.
 - RPV SUSY
 - Burdman et.al. PRD66, 014009
 - Littlest Higgs Models
 - Fajfer et.al. PRD73, 054026

$c \rightarrow u \mu^+ \mu^-$ Analysis Strategy

- First search for long distance components $D \rightarrow \pi V$, $V \rightarrow \mu^+ \mu^-$
- Golden Mode
 - $D_{_S} \rightarrow \phi \ \pi$
 - (no penguin or box diagrams)
- Then search for excess in the continuum region
 - $D^+ \rightarrow \pi^+ \mu^+ \mu^-$ with $m(\mu \mu) != \phi$

31 October 2006

Data Selection

[•] Trigger on dimuon

- Add a track
 - in the same jet as the dimuon pair
 - from the same vertex as the dimuon.
- D selection
 - $\mu^+\mu^-$ and π form a good vertex
 - $1.3 < m(\mu^+ \mu^- \pi) < 2.5 \text{ GeV/c}^2$
 - $p(\mu^+\mu^-\pi)$ in the SV-PV direction
- Large track multiplicity leads to several D candidates per event.
 - Select the best track based on track p_T , D vertex χ^2 , and distance between track and dimuon system.

•
$$M = \chi^2_{\text{vtx}} + \kappa_\pi^2 + \Delta R_\pi^2$$

DPF06 - Bill Lee

- Use variables that take advantage of long lifetimes of heavy hadrons
 - Isolation: $I_D = p(D) / \sum p_{\text{cone}}$
 - $R = (\Delta \eta^2 + \Delta \phi^2)^{\frac{1}{2}} < 1.0$
 - Transverse flight length significance: S_{D}
 - Collinearity angle: Θ_D
 - Pion impact parameter significance: S_{π}
- Variables are tuned separately for D and D_s due to the differing lifetimes

 $D \rightarrow \pi \phi \rightarrow \pi \mu^+ \mu^-$

31 October 2006

DPF06 - Bill Lee

Extracting the Resonant Branching Fraction

$$\frac{n(D^{+})}{n(D_{s})} = \frac{f_{c \to D}^{+}}{f_{c \to D}^{s}} \times \frac{f_{p}^{s}}{f_{p}^{+}} \times \frac{\epsilon^{+}}{\epsilon^{s}} \times \frac{BF(D^{+} \to \phi \pi^{+} \to \pi^{+} \mu^{-})}{BF(D_{s}^{+} \to \phi \pi^{+}) \times BF(\phi \to \mu^{+} \mu^{-})}$$

 $f_{c \rightarrow D}$: Fraction produced in fragmentation

- f_p : Prompt fraction
- ε : Reconstruction efficiency

$$\frac{\mathrm{BF}(D^+ \to \phi \pi^+ \to \pi^+ \mu^+ \mu^-)}{\mathrm{BF}(D_s^+ \to \phi \pi^+) \times \mathrm{BF}(\phi \to \mu^+ \mu^-)} = 0.17 \pm 0.07 \pm 0.05$$

$$BF(D^+ \to \phi \pi^+ \to \pi^+ \mu^+ \mu^-) = (1.75 \pm 0.7 \pm 0.5) \times 10^{-6}$$

SM: 1.77×10⁻⁶ CLEO-c ($\phi \rightarrow ee$): $(2.7^{+3.6}_{-1.8} \pm 0.2) \times 10^{-6}$

 $D^{\scriptscriptstyle +} o \pi^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$

$0.96 < m(\mu\mu) < 1.06 \text{ GeV/c2}$

$0.2 < m(\mu\mu) < 0.96 \text{ GeV}/c^2$ $1.06 < m(\mu\mu) < 1.76 \text{ GeV}/c^2$

Good agreement with expectations

Nonresonant $D^+ \rightarrow \pi^+ \mu^+ \mu^-$

2.40

- DØ clearly observes (>7 σ) $D_s^+ \rightarrow \phi \pi^+$ and sees evidence (3.1 σ) for $D^+ \rightarrow \phi \pi^+$.
- DØ has measured the branching fraction for $D^+ \to \pi^+ \phi \to \pi^+ \mu^+ \mu^-$.
 - consistant with the product of the two branching fractions.
- DØ has searched for the continuum production of $D^+ \rightarrow \pi^+ \mu^+ \mu^-$.
 - There is no evidence of signal in this channel.
 - Set the most stringent limit to date.
- FCNB charm decays are useful in setting limits on the effects of SUSY in the up quark sector.
- The Tevatron continues to deliver, expect DØ's 2 fb⁻¹ data set in the not so distant future.