Improved transverse momentumdistribution for ^a Higgs bosonproduced with ^a bottom quark

Bryan J. Field

in association with L. Reina (FSU) and C. Jackson (BNL)

Florida State University

2006 Joint Meeting of Pacific Region Particle Physics Communities30 October 2006

Outline

- **Q** Introduction
	- Quick review of SM and MSSM
	- Production channels and problems

 $bg \rightarrow$ $\rightarrow b\Phi \ \Phi = \{h^0, H^0\}$

- Limits on $\tan(\beta)$ from Higgs physics
- Fixed-order and Resummation
	- Small transverse momentum $\left(p_{T}\right)$
	- Formalism for $2 \rightarrow 2$ processes
Peaulte of our study
	- Results of our study
- **e** Conclusions

Introduction

- Bottom quarks produced in association with a Higgs boson(s) is of great experimental and theoretical interest
- MSSM can have enhanced bottom Yukawa couplingsin Higgs sector
- Higher order differential cross-sections for bottomprocesses are needed to make use of current andfuture data sets
- **e.** Resummation is more reliable at small values of transverse momentum

SM and MSSM Higgs

$$
\mathsf{EWSB}: h^{\mathsf{SM}} \to \{h^0, H^0, H^{\pm}, A^0\} \qquad \tan(\beta) = v_2/v_1
$$
\n
$$
\lambda_b^{\mathsf{SM}} = \sqrt{2} \frac{\overline{m}_b}{v} \frac{\sin \alpha}{\cos \beta}, \qquad \Phi = h^0
$$
\n
$$
\lambda_b^{\mathsf{MSSM}} = \begin{cases}\n-\sqrt{2} \frac{\overline{m}_b}{v} \frac{\sin \alpha}{\cos \beta}, & \Phi = H^0 \\
\sqrt{2} \frac{\overline{m}_b}{v} \frac{\cos \alpha}{\cos \beta}, & \Phi = H^0 \\
\sqrt{2} \frac{\overline{m}_b}{v} \tan \beta, & \Phi = A^0.\n\end{cases}
$$

- \triangle Higgs couples to mass
- **Q** Top quark loop is largest contribution in SM
- Several groups have calculated fixed-order cross-sections to NNLO
	- R. Harlander and W. Kilgore [Phys. Rev. Lett. **88** ²⁰¹⁸⁰¹ (2002)]
	- C. Anastasiou and K. Melnikov [Nucl. Phys. **B646** ²²⁰ (2002)]
	- V. Ravindran, J. Smith, and W. van Neerven [Nucl. Phys. **B665** ³²⁵ (2003)]
	- C. Anastasiou, K. Melnikov, F. Petriello [Phys. Rev. Lett. **93** ²⁶²⁰⁰² (2004)]

- Ω In MSSM, this is not always true
- As $\tan(\beta)$ increases, bottom-quark becomes important
- **Q** Both top- and bottom-quarks can be important
	- BJF, S. Dawson, and J. Smith [Phys. Rev. D **⁶⁹** ⁰⁷⁴⁰¹³ (2004)]
	- S. Dawson, C. Jackson, L. Reina, and D. Wackeroth [Mod. Phys. Lett. **A21** ⁸⁹ (2006)]

- **Q** We are interested in bottom-quarks
- Introduce bottom-quark PDFs (5FNS) for convenience $\mathbf 0$
- Potentially large signal in MSSM at large values of $\tan(\beta)$
- 5FNS allows ^a study of lower order diagrams
	- R. Harlander and W. Kilgore [Phys. Rev. D **⁶⁸** ⁰¹³⁰⁰¹ (2003)]
	- F. Maltoni, Z. Sullivan, and S. Willenbrock [Phys. Rev. D **⁶⁷** ⁰⁹³⁰⁰⁵ (2003)]

- **Q** Differential cross-sections are experimentally more useful
- **Q** Need extra parton in final state
- $2\to2$ kinematics
	- L Allows us to introduce cuts

- **Q** We also require bottom-quark tagging
- **Q** This is our process in 5FNS
	- J. Campbell, R.K. Ellis, F. Maltoni, and S. Willenbrock [Phys. Rev. D **⁶⁷** 095002 (2003)]
	- S. Dawson, C.B. Jackson, L. Reina, and D. Wackeroth [Phys. Rev. Lett. **94**031802 (2005)]
- $bg\rightarrow b\Phi$ is a preferred study, fixed-order calculations have been completed
- An experimental limit had been set with this process

Limits on $\tan(\beta)$

D0 Study: Phys. Rev. Lett. **95** ¹⁵¹⁸⁰¹ (2005)

Our Study

- Fixed-order calculations are known to be unreliableat small values of the transverse momentum $\left(p_{T}\right)$
- \bullet Most of the signal is at small p_T
- Resummation of $bg \to$ $\partial \Phi = h^0, h^0$
aliferential are
	- Understand small- p_T differential cross-section
	- **Experimental signal**
	- Push limit on $\tan(\beta)$ down further
	- We also need to say something about the bottom-quark transverse momentum p_T^b for
tegging tagging

Traditional Resummation

Resumming Higgs processes is well established

- **Q** Total cross-section resummation
	- C.P. Yuan [Phys. Lett. B **²⁸³** ³⁹⁵ (1992)]
	- S. Catani, D. de Florian, and M. Grazzini [JHEP **⁰¹⁰⁵** ⁰²⁵ (2001)]
	- S. Catani, D. de Florian, M. Grazzini, and P. Nason [JHEP **⁰³⁰⁷** ⁰²⁸ (2003)]
	- A. Kulesza, G. Sterman, and W. Vogelsang [Phys. Rev. D **⁶⁹** ⁰¹⁴⁰¹² (2004)]
- **Q** Differential cross-section resummation
	- E. Berger and J-W. Qiu [Phys. Rev.D **⁶⁷** ⁰³⁴⁰²⁶ (2003)]
	- BJF [Phys. Rev. D **⁷⁰** ⁰⁵⁴⁰⁰⁸ (2004)]
	- G. Bozzi, S. Catani, D. de Florian, and M. Grazzini [Nucl. Phys. B **⁷³⁷** ⁷³ (2006)]

The problem with these methods is that it is difficult to impose any **cuts**How does one calculate a resummed Higgs p_{T}^{Φ} spectrum while imposing p_{T}^{b} $>$ $\, T \,$ $\frac{\Phi}{T}$ spectrum while imposing $p_T^b > 20$ GeV or rapidity cuts?

1PI Resummation

One-Particle-Inclusive (1PI) Resummation formalism by N. Kidonakis

- Mod. Phys. Lett. **A19** ⁴⁰⁵ (2004)
- Int. J. Mod. Phys. **A19** ¹⁷⁹³ (2004)
- Phys. Rev. D **⁷³** ⁰³⁴⁰⁰¹ (2006)

Here we have all the power of the $2\to2$ kinematics (so we can introduce cuts) but we have the advantages of resummation, plus most **coefficients** have been calculated

$$
S^{2} \frac{d^{2} \sigma}{dT dU} = \int_{x_{1}}^{1} \frac{dx_{1}}{x_{1}} \int_{0}^{\hat{s}_{2}^{+}} \frac{d\hat{s}_{2}}{\hat{s}_{2} - \hat{t} + m_{b}^{2}} \phi(x_{1}) \phi(x_{2}^{\star}(\hat{s}_{2})) \hat{s}^{2} \frac{d^{2} \hat{\sigma}}{d\hat{t} d\hat{u}}
$$

$$
x_{2}^{\star}(\hat{s}_{2}) = \frac{\hat{s}_{2} + m_{b}^{2} - Q^{2} - x_{1}(T - Q^{2})}{x_{1}S + U - Q^{2}}
$$

NLL and NNLL

$$
\hat{s}^{2} \frac{d^{2} \hat{\sigma}_{ij}^{(k)}}{d\hat{t} d\hat{u}} = \sum_{ij} \left(\frac{\alpha_{s}}{\pi} \right)^{k} \left\{ A^{ij}(\hat{s}_{2}) \delta(\hat{s}_{2}) + \sum_{l=0}^{2k-1} a_{l}^{ij}(\hat{s}_{2}) \left[\frac{\ln^{l}(\hat{s}_{2}/M^{2})}{\hat{s}_{2}} \right]_{+} \right\},
$$

$$
d\hat{\sigma}^{(1)} = d\hat{\sigma}^{B} \frac{\alpha_{s}}{\pi} \left\{ c_{3} \mathcal{D}_{1}(\hat{s}_{2}) + c_{2} \mathcal{D}_{0}(\hat{s}_{2}) + c_{1} \delta(\hat{s}_{2}) \right\}
$$

$$
d\hat{\sigma}^{(2)} = d\hat{\sigma}^{B} \frac{\alpha_{s}^{2}}{\pi^{2}} \left\{ \frac{1}{2} c_{3}^{2} \mathcal{D}_{3}(\hat{s}_{2}) + \left[\frac{3}{2} c_{3} c_{2} - \frac{\beta_{0}}{4} c_{3} \right] \mathcal{D}_{2}(\hat{s}_{2}) \right.
$$

+
$$
\left[c_{3} c_{1} + (C_{F} + C_{A})^{2} \ln^{2} \left(\frac{\mu_{F}^{2}}{Q^{2}} \right) - 2(C_{F} + C_{A}) T_{2} \ln \left(\frac{\mu_{F}^{2}}{Q^{2}} \right) \right.
$$

+
$$
\frac{\beta_{0}}{4} c_{3} \ln \left(\frac{\mu_{R}^{2}}{Q^{2}} \right) - \zeta_{2} c_{3}^{2} \left[\mathcal{D}_{1}(\hat{s}_{2}) + \left[-(C_{F} + C_{A}) \ln \left(\frac{\mu_{F}^{2}}{Q^{2}} \right) c_{1} - \frac{\beta_{0}}{4} (C_{F} + C_{A}) \ln \left(\frac{\mu_{F}^{2}}{Q^{2}} \right) \right] \right.
$$

$$
C_{A}) \ln \left(\frac{\mu_{F}^{2}}{Q^{2}} \right) \ln \left(\frac{\mu_{R}^{2}}{Q^{2}} \right) + (C_{F} + C_{A}) \frac{\beta_{0}}{8} \ln^{2} \left(\frac{\mu_{F}^{2}}{Q^{2}} \right) - \zeta_{2} c_{2} c_{3} + \zeta_{3} c_{3}^{2} \left[\mathcal{D}_{0}(\hat{s}_{2}) \right]
$$

Coefficients

$$
bg \rightarrow b\Phi
$$

$$
c_1 = \left[C_F \ln\left(\frac{Q^2 - \hat{u}}{Q^2}\right) + C_A \ln\left(\frac{Q^2 - \hat{t}}{Q^2}\right) - \frac{3}{4}C_F - \frac{\beta_0}{4}\right] \ln\left(\frac{\mu_F^2}{Q^2}\right) + \frac{\beta_0}{4} \ln\left(\frac{\mu_R^2}{Q^2}\right)
$$

$$
c_2 = 2C_F \ln\left(\frac{m_b^2 - \hat{t}}{m_b\sqrt{\hat{s}}}\right) + C_A \ln\left(\frac{m_b^2 - \hat{u}}{m_b^2 - \hat{t}}\right)
$$

$$
-C_F - 2C_F \ln\left(\frac{Q^2 - \hat{u}}{Q^2}\right) - 2C_A \ln\left(\frac{Q^2 - \hat{t}}{Q^2}\right) - (C_F + C_A) \ln\left(\frac{\mu_F^2}{\hat{s}}\right)
$$

 $c_3 = 2(C_A + C_F)$

Theoretical Checks

First we needed to check the small- p_{T} behavior of known fixed-order calculations

- Use the same parameters as fixed-order calculations
	- $M_\Phi = 120$ GeV
	- $p_T^b > 20$ GeV, $|\eta^b| < 2~(2.5)$ |
	- $\tan(\beta) = 40$
	- $\mu=\mu_0/2$, $\mu_0=M_\Phi/2+m_b^{pole}$
	- Bottom-quark $\overline{\mathsf{MS}}$ running mass
- **Q** Then we can study other aspects
	- Ω μ -dependence
	- **Q** Additional differential quantities
	- Total cross-sections, etc $\overline{\mathcal{O}}$

NLL Resummation Results

NLL Resummation Results

Resummation Results at NNLL

μ **Dependence**

Total cross-sections

APS-DPF2006+JPS2006 - p.15/1

Conclusions

- A Higgs boson(s) produced with bottom-quark(s) isan important discovery channel
- **2 1PI Resummation gives us a window into the small** p_T behavior of the Higgs while leaving some control over bottom-quark tagging
- High theoretical confidence in small- p_T region allows
 ϵ for better experimental limits in near future
- **Exercise 1 Several other quantities can be studied and** combined for better precision