The 3-site Higgsless Model

Elizabeth H. Simmons Michigan State University

- General Principles
- A Simple 3-Site Model
- The 3-site model and Experiment
- Conclusions

Joint Meeting of Pacific Region Particle Physics Communities (APS-DPF2006 + JPS2006...)

hep-ph/0607124

Higgsless Models and Ideal Delocalization: Review of General Principles

Higgsless models are low-energy effective theories of dynamical electroweak symmetry breaking which include the following elements

- massive 4-d gauge bosons arise in the context of a 5-d gauge theory with appropriate boundary conditions
- WW scattering unitarized through exchange of KK modes (instead of Higgs exchange)
- language of Deconstruction allows a 4-d "Moose" representation of the model

Deconstructed Higgsless Models

- 5th dimension discretized
- $SU(2)^N \times U(1)$; general f_i and g_k encompass spatially-dependent couplings, warping
- Localized fermions would sit on "branes," i.e. sites 0, N+1, but these present difficulties

Foadi, *et. al.* & Chivukula *et. al.*

Conflict of S & Unitarity

Heavy resonances must unitarize WW scattering (since there is no Higgs!)

This bounds lightest KK mode mass: $m_{Z_1} < \sqrt{8\pi}\,v$... and yields a value of the S-parameter that is

$$
\alpha\,S \geq \frac{4s_Z^2c_Z^2M_Z^2}{8\pi v^2} = \frac{\alpha}{2}
$$

too large by a factor of a few!

Independent of warping or gauge couplings chosen...

Delocalized Fermions

Delocalized Fermions, .i.e., mixing of "brane" and "bulk" modes

$$
\mathcal{L}_f = \vec{J}_L^{\mu} \cdot \left(\sum_{i=0}^N \mathbf{X}_i \vec{A}_{\mu}^i \right) + J_Y^{\mu} A_{\mu}^{N+1}
$$

Can Reduce Contribution to S!

Cacciapaglia, Csaki, Grojean, & Terning Foadi, Gopalkrishna, & Schmidt

Ideal Fermion Delocalization

- Recall that the light W's wavefunction is orthogonal to wavefunctions of KK modes
- Choose fermion delocalization profile to match W wavefunction profile along the 5th dimension: $g_i x_i \propto v_i^W$
- No (tree-level) fermion couplings to KK modes!

$$
\hat{S} = \hat{T} = W = 0
$$

$$
Y = M_W^2 (\Sigma_W - \Sigma_Z)
$$

Mass Eigenstate RSC, HJH, MK, MT, EHS hep-ph/0504114

The 3-site Model: general principles in action

Three-site model in biology

3-Site Model: basic structure $\left(\begin{array}{c} 9 \\ 9 \end{array} \right)$ $f_1 \nearrow f_2$ 9_2 L¹ $\mathbf R$ $SU(2) \times SU(2) \times U(1)$ $g_0, g_2 \ll g_1$ ψ_{L0} ψ_{L1} ψ_{R1} t_{R2} , b_{R2}

pR¹

Gauge boson spectrum: photon, Z, Z', W, W' Fermion spectrum: t, T, b, B (ψ is an SU(2) doublet) and also c, C, s, S, u, U, d, D plus the leptons

3-Site Ideal Delocalization

General ideal delocalization condition $\;g_i(\psi_i^f)\;$ $2 = g_W v_i^w$

becomes $\frac{90(\sqrt{\pi}}{2\sqrt{3}}$ in 3-site model $g_0(\psi_{L0}^f)^2$ $g_1(\psi_{L1}^f)^2$ = v_W^0 $\overline{v_W^1}$

From W, fermion eigenvectors, solve for

$$
\epsilon_L^2 \to (1 + \epsilon_{fR}^2)^2 \left[\frac{x^2}{2} + \left(\frac{1}{8} - \frac{\epsilon_{fR}^2}{2} \right) x^4 + \frac{5 \epsilon_{fR}^4 x^6}{8} + \ldots \right]
$$

 $\varepsilon_L^2=2$ $\bigwedge^2 W$ $\overline{M_{W'}^2}$ \setminus + 6 $\bigwedge^2 W$ $\overline{M_{W'}^2}$ \setminus^2 For all but top, $\epsilon_{fR} \ll 1$ and $\epsilon_{L}^{2} = 2 \left(\frac{M_{W}^{2}}{M_{W}^{2}} \right) + 6 \left(\frac{M_{W}^{2}}{M_{W}^{2}} \right)^{2} + ...$

insuresW' and Z' are fermiophobic!

 $\hat{S} = \hat{T} = W = 0$ $Y = M_W^2(\Sigma_W - \Sigma_Z)$

Use WW scattering to see W': Birkedal, Matchev, Perelstein hep-ph/0412278

The 3-site Model and Experiment

Triple Gauge Vertices

Hagiwara, *et al.* define:

$$
\mathcal{L}_{TGV} = -ie\frac{c_Z}{s_Z} [1 + \Delta\kappa_Z] W^+_\mu W^-_\nu Z^{\mu\nu} - ie [1 + \Delta\kappa_\gamma] W^+_\mu W^-_\nu A^{\mu\nu} \n- ie\frac{c_Z}{s_Z} [1 + \Delta g_1^2] (W^{+\mu\nu} W^-_\mu - W^{-\mu\nu} W^+_\mu) Z_\nu \n- ie(W^{+\mu\nu} W^-_\mu - W^{-\mu\nu} W^+_\mu) A_\nu ,
$$

In 3-site model:
$$
\Delta g_1^Z = \Delta \kappa_Z = \frac{M_W^2}{2c^2 M_{W'}^2} \qquad \Delta \kappa_\gamma = 0
$$

LEP II measurement: $\Delta g_1^Z \leq 0.028$ @ 95%CL places lower bound on W' mass:

$$
M_{W^\prime} \geq 380\,\text{GeV}\sqrt{\frac{0.028}{\Delta g_1^Z}}
$$

... plus unitarity

$$
\text{and recalling} \qquad \varepsilon_L^2 = 2 \left(\frac{M_W^2}{M_{W'}^2} \right) + 6 \left(\frac{M_W^2}{M_{W'}^2} \right)^2 + \ldots
$$

this translates into
$$
\epsilon_L \approx 0.30 \left(\frac{380 \,\text{GeV}}{M_{W'}} \right)
$$

As mentioned earlier, maintaining unitarity of WW scattering requires $m_{W'} < \sqrt{8\pi} \nu \approx 1.2 \,\textrm{TeV}$

We conclude: $0.095 \le \epsilon_L \le 0.30$

$$
b \longrightarrow s\gamma
$$

To keep this within bounds requires* $g_R^{Wtb}/g_L^W < .004$
which translates into the bound $\varepsilon_{tR} < 0.67$
Since $m_f \approx \frac{\epsilon_L \epsilon_{fR} M}{\sqrt{1 + \epsilon_{fR}^2}}$ and b-quark mass is small,
we can leverage ϵ_{tR} to show $\epsilon_{bR} < .015$
hence, b is ideally delocalized like light fermions

* Larios, Perez,Yuan, hep-ph/9903394

$Δρ$ at one loop

In $\epsilon_L \rightarrow 0$ limit, can calculate leading "new" contribution

- SM contribution vanishes since $m_t, m_b \propto \epsilon_L$
- ϵ_L is custodially symmetric

From the following W diagrams (and related Z diagrams)

$Z \rightarrow b\overline{b}$ at one loop

b

 \setminus

Involves heavy fermions whose mass (M) is above the reach of the effective theory. We invoke a benchmark UV completion to estimate the size of effects:

Conclusions:

The 3-site model yields a viable effective theory of electroweak symmetry breaking valid up to 1.5 - 2 TeV

- incorporates / illustrates general principles [Higgsless models, deconstruction, ideal delocalization]
- accommodates flavor [e.g. heavy t quark]
- observables calculable at one loop
- extra gauge bosons can be relatively light [hard to find at LHC/ILC since they are fermiophobic]

Precision electroweak corrections discussed in BSM Session talks by Chivukula and Matsuzaki