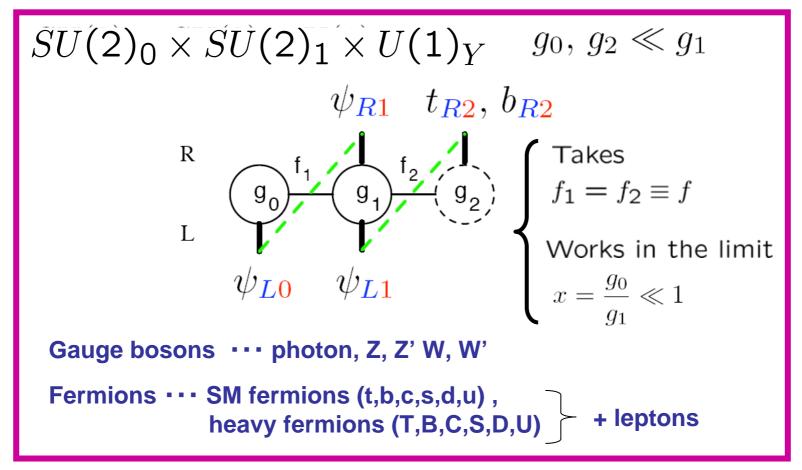
One-Loop Corrections to the S-parameter in a Three-Site Higgsless Model

Shinya Matsuzaki (Nagoya University)

Contents

- Size of Radiative EW Corrections
- 'tHooft-Feynman Gauge Calculations
- Conclusions


Joint Meeting of Particle Region Particle Physics Communities (APS-DPF2006 + JPS2006)

S.M, R.S. Chivukula, E.Simmons, hep-ph/0607191 & M.Tanabashi

Size of Radiative EW Corrections

The 3-Site Model

Details already mentioned by previous speaker

In this talk, we focus on the gauge-sector (gauge bosons, NGBs)

The Size of Radiative Corrections

Tree-Level Value of the S-Parameter

$$\alpha S^{tree} = \frac{4s^2 M_W^2}{M_{W'}^2} \left(1 - \frac{x_1 M_{W'}^2}{2M_W^2} \right)$$
$$\frac{M_W^2}{M_{W'}^2} \approx \frac{x^2}{4} \qquad \frac{g_0}{g_1} = x$$
If $x_1 = x^2/2 \quad \alpha S^{tree} = 0!!$ R.S.Chivukula, et al PRD72 (2005)

 $x_{1} \cdots \text{amount of delocalization}$ $\mathcal{L}_{f} = \vec{J}_{L}^{\mu} \cdot \left((1 - x_{1})L_{\mu} + x_{1}V_{\mu}\right) + J_{Y}^{\mu}B_{\mu}$ $\underbrace{\sum_{L} \sum_{f} \sum$

"Duality" J.M.Maldacena, Adv.Theor.Math.Phys. 2 (1998) **Tree-level value in** Large-N value **5D** gauge theory in 4D SCGT **Expected to scale like** $\alpha S^{tree} = s^2 x^2 \left(1 - \frac{x_1}{2r^2} \right)$ $\frac{x^2}{4} \simeq \frac{M_W^2}{M_W^2} = \mathcal{O}\left(\frac{g_{eW}^2 N}{(4\pi)^2}\right)$ Cf. G.Burdman and Y,Nomura, PRD69 (2004) To be consistent with Large-N approximation $|\alpha S^{1-loop}| = \mathcal{O}\left(\frac{g_{eW}^2}{(4\pi)^2}\right) \sim \mathcal{O}(10^{-3})$

Since $\alpha S^{tree} \simeq 0$, $x_1 = \mathcal{O}(x^2)$ One-loop EW corrections are potentially relevant!!

'tHooft-Feynman Gauge Calculations

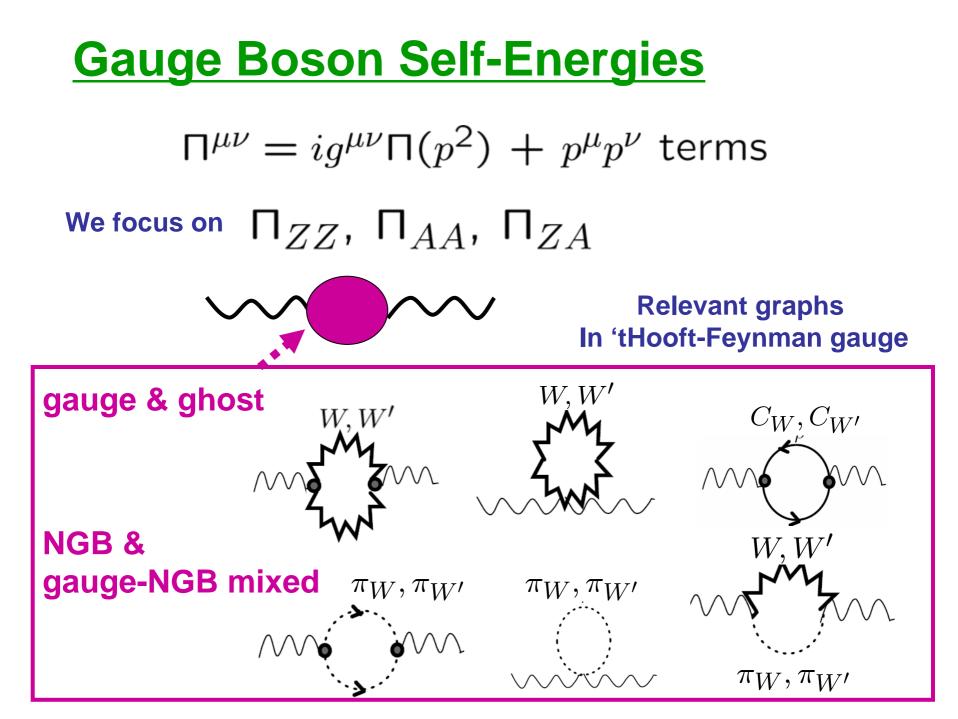
<u> R_{ξ} Gauge-Fixing of $SU(2)_0 \times SU(2)_1 \times U(1)_Y$ </u>

* Details are shown in hep-ph/0607191

Taking 'tHooft-Feynman gauge for all gauge symmetries

We have vertices constructed from

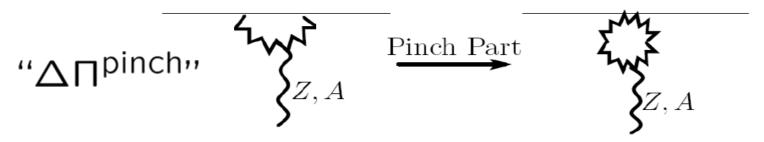
Unphysical Goldstone Bosons

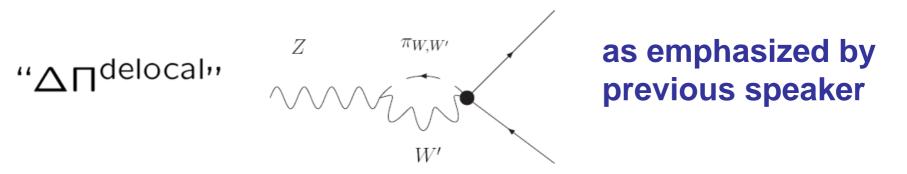

$$\pi_{W^{\pm}}$$
, $\pi_{W^{\prime\pm}}$, π_{Z} , $\pi_{Z^{\prime}}$

FP Ghost (Anti-Ghost)

$$C_{W^{\pm}}$$
, $C_{W^{\prime\pm}}$, C_Z , $C_{Z^{\prime}}$, C_A

Dynamical Gauge Bosons


$$W^\pm$$
, W'^\pm , Z, Z', A


Pinch Contributions

We need a "conventional" pinch part

and an "extra" pinch part arising from delocalization!!

"Gauge-invariant" gauge boson self-energy $\widetilde{\Pi}(p^2)$ $\widetilde{\Pi} = \Pi + \Delta \Pi^{\text{pinch}} + \Delta \Pi^{\text{delocal}}$

which should be associated with lpha S

$$\frac{\alpha S}{4s^2c^2} = \widetilde{\Pi}'_{ZZ} - \widetilde{\Pi}'_{AA} - \frac{c^2 - s^2}{sc} \widetilde{\Pi}'_{ZA}$$

$$\tilde{\Pi}' \equiv \frac{\tilde{\Pi}(M_Z^2) - \tilde{\Pi}(0)}{M_Z^2}$$

Result on the S-Parameter

In the limit $x = g_0/g_1 \simeq M_W/M_{W'} \gg 1$, the leading-log approximation yields

 $\Lambda\,\cdots$ cutoff of the effective theory

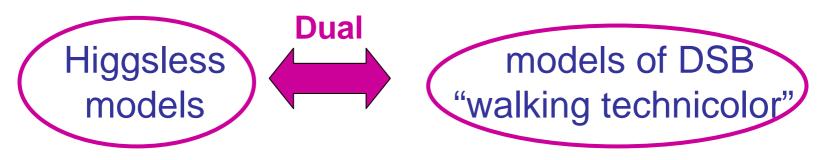
$$\begin{split} \alpha S_{1-loop} &= \frac{\alpha}{12\pi} \log \left(\frac{M_{W'}^2}{M_W^2} \right) - \frac{41\alpha}{24\pi} \log \left(\frac{\Lambda^2}{M_{W'}^2} \right) \\ &+ \frac{\alpha}{2\pi} \left(\frac{2x_1}{x^2} \right) \log \left(\frac{\Lambda^2}{M_{W'}^2} \right) \end{split}$$

'Universal" part

- \cdot arises from "scaling" between $\,M_W\,$ and $\,M_{W'}\,$
- has coefficient precisely equal to the leading log contribution from a heavy Higgs boson!!

$$\alpha S_{Higgs} = \frac{\alpha}{12\pi} \log\left(\frac{M_H^2}{M_W^2}\right)$$

It is easy to match S to experimental bound!!


 $\Lambda\,\cdots$ cutoff of the effective theory

$$\begin{split} \alpha S_{1-loop} &= \frac{\alpha}{12\pi} \log \left(\frac{M_{W'}^2}{M_W^2} \right) - \frac{41\alpha}{24\pi} \log \left(\frac{\Lambda^2}{M_{W'}^2} \right) \\ &+ \frac{\alpha}{2\pi} \left(\frac{2x_1}{x^2} \right) \log \left(\frac{\Lambda^2}{M_{W'}^2} \right) \end{split}$$
"Non-universal" part

- \cdot arises from "scaling" between $M_{W'}$ and cutoff igwedge
- includes "delocalization (x_1) "-dependence cancelled by the choice $x_1 = x^2/2$ as well as $\alpha S^{tree} = 0$!!
- has a cutoff-dependence which is cancelled by the scale-dependence of the appropriate counterterms

Conclusions

• We computed the one-loop corrections to the S-parameter in a 3-site Higgsless model.

In these terms our calculation is the first to compute the sub-leading 1/N corrections to the S-parameter.

• We show that the chiral-log corrections separate into a *universal* and *non-universal* parts.