

Ai Nagano University of Tsukuba for CDF collaboration DPF 2006

Outline

Introduction Event Selection W cross section result $W + \gamma$ cross section Conclusion

The initial state radiation

- \square measure W+ γ cross section
- The W+ γ kinematic distribution is sensitive to anomalous couplings

Introduction

- Search for physics beyond standard model
 - excess in high photon ET
 - excess in large $\Delta R(l,\gamma)$
- ISR and s-channel interfere each other. Radiation amplitude zero

W Event Selection

- □ High p⊤ muon Datasets 1/fb
- W Event Selection
 - one isolated high p⊤ muon : p⊤ > 20 GeV
 - neutrino observed as missing transverse energy : MET > 20 GeV
 - 30 GeV < M⊤(W) < 120 GeV
 - Supress $Z \rightarrow \mu\mu$: no isolated track $p_T > 10$ GeV
 - Cosmic Ray veto
- □ Background
 - QCD background (0.87 %)
 - determined from Data
 - $Z \rightarrow \mu\mu$ background (7.74 %)
 - determiened from PYTHIA Monte Carlo
 - W $\rightarrow \tau v$ background (3.04 %)
 - determiened from PYTHIA Monte Carlo

The plane is divided into four region
assuming no correlation
between Isolation and MET.
Region D is signal region.
(#of events in A)/(# in B) ×(# in C)

'''IIII

W cross section in Muon Channel as a cross check

	Number of Events
$W \rightarrow \mu \nu$	452811
QCD	4549
$Z ightarrow \mu \mu$	40311
W ightarrow au v	15807
Number of Total Expected	513478
Number of Observed	520818

- □ We observed 520818 W candidates in muon channel.
- $\Box \sigma (W \rightarrow \mu \nu) = 2.78 + -0.01 (stat.)[nb]$
- □ agree well with published result 72/pb PRL 94, 091803
 - 2.775+-0.01(stat.)+-0.053(sys.)+-0.167(lum.) [nb]
- \Box Thus we can move on to W+ γ analysis

Data agree with Standard model prediction

W+y Event Selection in Muon Channel

- □ After inclusive W selection then add photon selection.
- \square W+ γ process
 - simulated by Monte Carlo program by U. Baur
 - It contains initial and final state photon radiation and the trilinear gauge coupling process.
- Photon ID
 - ET> 7 GeV
 - |η| < 1.0
- \square W+ γ Selection
 - ΔR (lepton,photon) > 0.7

W+ γ Background contributions

- □ W+jet is the largest background. 22.7%
 - Jet misidentified as photon
 - determined from data
 - measure the photon fakerates versus jet ET
- \Box Z+ $\gamma \rightarrow \mu \mu \gamma$ 13.1 %
 - one muon not identified
 - determined from Monte Carlo
- $\Box \quad W+\gamma \longrightarrow \tau v \gamma \ 1.5 \ \%$
 - determined from Monte Carlo

0.3 % at photon E⊤=7GeV 0.03% at photon E⊤>50GeV

• The W+ γ cross section in the kinematic range of $\Delta R(\mu, \gamma) > 0.7$ and photon ET > 7 GeV using photon $|\eta| < 1.0$

	Number of Events
$W\gamma$	541.7±4.02(stat.)±1.57(sys.)
W+jet	194.3±0.15(stat.)±66.91(sys.)
$Z\gamma$	112.0±0.39(stat.)±0.32(sys.)
$W\gamma(au)$	12.4±0.60(stat.)±0.04(sys.)
Number of Total	860.4±29.25(stat.)±66.95(sys.)
Number of Observed	855

 σ (W $\gamma \rightarrow \mu \nu \gamma$)=19.11+-1.04(stat.)+-2.40(sys.)+-1.11(lumi.)[pb]

theoretical NLO cross section : 19.3+-1.4 pb

Systematic Uncertainties

Source	% effect on σ
Luminosity	5.8
Jet Fake	10.1
Trigger Efficiency	0.5
Tracking Efficiency	0.2
Muon ID	0.6
Muon Momentum Scale	0.2
Photon Energy scale	1.0
Photon ID	3.0
Z vertex cut efficiency	0.2
Cosmic rejection	0.01
Conversion	2.0
Acceptance	3.0
Total (excluding Luminosity)	12.6

□ The photon fake rate uncertainty yields the dominant uncertainty on the cross section.

Photon E_T, $\Delta R(I,\gamma)$ distribution

Data agree well with Standard Model prediction

CDF Runll Preliminary 1/fb Cluster M_T (μ γ ,v) (GeV/c² 300 ISR, s-channel Event DATA Invariant Mass $(\mu, \nu) = Mw$ W+γ MC cluster MT($\mu\gamma$, ν) > Mw FSR Event п 200 Invariant Mass (μ, ν) < Mw cluster $M_T(\mu\gamma,\nu) \sim M_W$ 150 100 cluster M_T($\mu\gamma$, ν) = 90 In future plan, we can separate ISR, s-channel Events from FSR M_{T}^{100} (µ,v) (GeV/c²) 60 80 40 with cluster $M_T(\mu\gamma,\nu) > 90$ GeV cut.

Mass distributions

CDF Runll Preliminary 1/fb

Study of W+gamma Production at the Tevatron

Conclusion

- \Box W+ γ cross section measured in 1/fb
 - $\sigma BR(W \rightarrow \mu \nu)$ 19.11+-1.04 (stat.) +-2.40 (sys.) +- 1.11(lumi.) [pb]
 - theoretical NLO cross section 19.3+-1.4 pb
- □ very good agreement with standard model prediction.
- Plan
 - extract anomalous couplings
 - study radiation amplitude zero