Joint Meeting of Pacific Region Particle Physics Communities

Measurement of the UT angle γ at BaBar Virginia Azzolini

IFIC – Universitat de Valencia – CSIC (on behalf of the BaBar Collaboration)

Outline:
Measurements of γ using $B^{\pm} \rightarrow D^{(*)}K^{(*)\pm}$ GLW MethodADS Method

D⁰ Dalitz Method (GGSZ)

Methods overview

Access γ via interference between b \rightarrow cus and b \rightarrow ucs decay processes Reconstruct D in final states f accessible to both to D⁰ and <u>D⁰</u>

DPF-06

Gronau-London-Wyler method Phys. Lett. B253, 483; Phys. Lett. B265, 172 (1991)

. Reconstruct D meson in CP-eigenstates (accessible to D⁰ and <u>D⁰</u>) even (CP = +1 $\pi^+\pi^-$, K⁺K⁻) & odd (CP = -1 Ks⁰ π^0 , Ks⁰ ϕ , Ks⁰ ω) ... Measure 4 observables R_{CP±}, A_{CP±} (formulae for D⁰K):

$$R_{CP+} = \frac{\Gamma(B^- \to D_{CP+}^0 K^-) + \Gamma(B^+ \to D_{CP+}^0 K^+)}{2\Gamma(B^- \to D^0 K^-)} = 1 \pm 2r_B \cos\gamma \cos\delta_B + r_B^2}{p_B^0 C_{P+}^0 K^-) + \Gamma(B^+ \to D_{CP+}^0 K^+)} = \pm 2r_B \sin\gamma \sin\delta_B / R_{CP+}}$$

$$R_{CP+} = \frac{\Gamma(B^- \to D_{CP+}^0 K^-) + \Gamma(B^+ \to D_{CP+}^0 K^+)}{\Gamma(B^- \to D_{CP+}^0 K^+)} = \pm 2r_B \sin\gamma \sin\delta_B / R_{CP+}}$$

$$PRD 73, 051105 - 232 *10^6 BB pairs$$

$$R_{CP+} = 0.90 \pm 0.12(stat.) \pm 0.04(syst.) \quad R_{CP} = 0.86 \pm 0.10(stat.) \pm 0.05(syst.) \\ A_{CP+} = 0.35 \pm 0.13(stat.) \pm 0.04(syst.) \quad A_{CP} = -0.06 \pm 0.13(stat.) \pm 0.04(syst.) \\ x_+ = -0.082 \pm 0.053 \pm 0.018, \ x^- = 0.102 \pm 0.062 \pm 0.022, \qquad r_B^{-2} = -0.12 \pm 0.08 \pm 0.03$$

$$B \rightarrow D^0 K^* \qquad PRD 73, 071103 - 232 *10^6 BB pairs$$

$$R_{CP+} = 1.96 \pm 0.40(stat.) \pm 0.11(syst.) \quad R_{CP} = 0.26 \pm 0.40(stat.) \pm 0.12(syst.) \\ x_+ = 0.32 \pm 0.18 \pm 0.07, \ x^- = 0.33 \pm 0.16 \pm 0.06, \qquad r_B^{-2} = 0.30 \pm 0.25$$

$$B \rightarrow D^{*0} K \qquad PRD 71, 031102 - 123 *10^6 BB pairs$$

$$R_{CP+} = 1.06 \pm 0.26(stat.) \pm 0.10(syst.) \quad CP \text{ not reconstructed} \\ A_{CP+} = 0.10 \pm 0.23(stat.) \pm 0.04(syst.) \qquad CP \text{ not reconstructed}$$

DPF-06

Atwood-Dunietz-Sony method Phys. Rev. Lett. 78, 3257 (1997)

<u>Classic two body</u>: Decays into non-CP state, where the color-favoured mode decays via Doubly-Cabibbo Suppressed (DCS) channels

Small BF (~10⁻⁷), but amplitudes are similar \rightarrow expected large CP symmetries Observables R_{ADS} and A_{ADS} (based on opposite sign and same sign kaon decays):

$$R_{ADS} = \frac{Br([K^{+}\pi^{-}]K^{-}) + Br([K^{-}\pi^{+}]K^{+})}{Br([K^{-}\pi^{+}]K^{-}) + Br([K^{+}\pi^{-}]K^{+})} = r_{D}^{2} + r_{B}^{2} + 2r_{B}r_{D}\cos(\delta_{D} + \delta_{B})\cos\gamma$$
$$A_{ADS} = \frac{Br([K^{+}\pi^{-}]K^{-}) - Br([K^{-}\pi^{+}]K^{+})}{Br([K^{+}\pi^{-}]K^{-}) + Br([K^{-}\pi^{+}]K^{+})} = 2r_{B}r_{D}\sin(\delta_{D} + \delta_{B})\sin\gamma / R_{ADS}$$

with unknown parameters: $r_{B'} \delta$ and γ input: $r_{D} = \left| \frac{A(D^{0} \rightarrow K^{+}\pi^{-})}{A(D^{0} \rightarrow K^{-}\pi^{+})} \right| = 0.060 \pm 0.003$ (D*+ $\rightarrow D^{0}$ (K π) π + decays - - PRL91,171801(2003))

> D(*)^oK: PRD 72, 032004 - 232 *10⁶ B<u>B</u> pairs D^{o*}K*: PRD 72, 071104 - 232 *10⁶ B<u>B</u> pairs

hep-ex/0607065 - 226 *10⁶ B<u>B</u> pairs

$$ADS B \to D^{0}[K^{+}\pi^{-}\pi^{0}]K$$

<u>Multi-body</u>: similar to previous analysis with $f = K^+\pi^-\pi^0$. Complication for γ extraction from $|A_D|$, δ_D variation across the D⁰ Dalitz plane:

$$R_{ADS} = \frac{\Gamma(B^{+} \to [K^{-}\pi^{+}\pi^{0}]_{D^{0}}K^{+}) + \Gamma(B^{+} \to [K^{-}\pi^{+}\pi^{0}]_{\overline{D^{0}}}K^{+}) + \Gamma(B^{-})}{\Gamma(B^{+} \to [K^{+}\pi^{-}\pi^{0}]_{D^{0}}K^{+}) + \Gamma(B^{+}) + \Gamma(B^{+} \to [K^{+}\pi^{-}\pi^{0}]_{\overline{D^{0}}}K^{+}) + \Gamma(B^{-})}$$

we can express
$$R_{ADS}$$
 as

$$R_{ADS} = \int \left| r_B e^{i(\delta_B + \gamma)} + r_D e^{i\delta_D} \right|^2 dm_{K\pi} dm_{K\pi^0} = r_B^2 + r_D^2 + 2r_B r_D C \cos \gamma$$

$$r_{B}^{(*)} = \frac{|A(B^{-} \to \underline{D}^{(*)0} K^{-})|}{|A(B^{-} \to D^{(*)0} K^{-})|} \sim 0.1 - 0.2$$

$$r_{D}^{2} \equiv \Gamma(D^{0} \to K^{+} \pi^{-} \pi^{0}) / \Gamma(D^{0} \to K^{-} \pi^{+} \pi^{0})| = (0.214 \pm 0.011)\% \qquad \text{(BaBar, preliminary)}$$

$$C = \frac{1}{r_{D} BR (D^{0} \to K^{-} \pi^{+} \pi^{0})} \int A(D^{0} \to K^{-} \pi^{+} \pi^{0}) A(D^{0} \to K^{+} \pi^{-} \pi^{0}) \cos \Delta dm_{12} dm_{13}$$

$$\Delta = \delta_{\rm B} + \delta_{\rm D} - \delta_{\rm D} - 4$$

DPF-06

Giri-Grossman-Soffer-Zupan (Dalitz) method

D⁰, <u>D</u>⁰ decay to 3 body final state $K_s \pi^+ \pi^-$

pros: Only Two-fold ambiguity $(\delta_B, \gamma) \rightarrow (\delta_B + \pi, \gamma + \pi)$ significantly larger statistical power Br(D⁰ \rightarrow K₁ $\pi\pi$) ~10*Br(D⁰ \rightarrow f_{CP})

No D mixing No CP violation in D decays

hep-ex/0607104 - 347 *10⁶ BB pairs

GGSZ $D^0 \rightarrow K_{\tau}\pi\pi$ method

 $f(m_{,}^{2},m_{,}^{2})$ extracted from unbinned maximum likelihood fit to tagged D⁰

(from $D^{(*)+} \rightarrow D^0 \pi$ + decays, ~390k evts @97.7% purity).

. 3-body D⁰ decays proceed mostly via 2 -body decays ... A_D = 16 distinct resonances + 1 NR term

... Not so good for $\pi\pi$ S-wave

.... $\sigma(500) / \sigma'(1000)$ added to describe reasonably well the data

	1		
Component	$Re\{a_re^{i\phi_r}\}$	$Im\{a_re^{i\phi_r}\}$	Fit fraction (%)
$K^{*}(892)^{-}$	-1.223 ± 0.011	1.3461 ± 0.0096	58.1
$K_0^*(1430)^-$	-1.698 ± 0.022	-0.576 ± 0.024	6.7
$K_2^*(1430)^-$	-0.834 ± 0.021	0.931 ± 0.022	3.6
$K^{*}(1410)^{-}$	-0.248 ± 0.038	-0.108 ± 0.031	0.1
$K^{*}(1680)^{-}$	-1.285 ± 0.014	0.205 ± 0.013	0.6
$K^{*}(892)^{+}$	0.0997 ± 0.0036	-0.1271 ± 0.0034	0.5
$K_0^*(1430)^+$	-0.027 ± 0.016	-0.076 ± 0.017	0.0
$K_2^*(1430)^+$	0.019 ± 0.017	0.177 ± 0.018	0.1
$\rho(770)$	1	0	21.6
$\omega(782)$	-0.02194 ± 0.00099	0.03942 ± 0.00066	0.7
$f_2(1270)$	-0.699 ± 0.018	0.387 ± 0.018	2.1
ho(1450)	0.253 ± 0.038	0.036 ± 0.055	0.1
Non-resonant	-0.99 ± 0.19	3.82 ± 0.13	8.5
$f_{0}(980)$	0.4465 ± 0.0057	0.2572 ± 0.0081	6.4
$f_0(1370)$	0.95 ± 0.11	-1.619 ± 0.011	2.0
σ	1.28 ± 0.02	0.273 ± 0.024	7.6
σ'	0.290 ± 0.010	-0.0655 ± 0.0098	0.9

Virginia Azzolini

... unitarity

K-matrix Model *

. include $\pi\pi$ S-wave terms

 $\dots \chi_2$ /dof similar to BW model

8 * I.J.R.Aitchison, Nucl. Phys. A189, 417 (1972) V.V.Anisovitch, A.V. Sarantev EPJ A16, 229 (2003)

DPF-06

$\mathbf{\mathbf{k}}$

GGSZ $D^0 \rightarrow K_s \pi \pi$ method

Dalitz model systematic uncertainties:

- . introduce 8 alternative models
- .. generate high statistics toy MC (x100 data statistics) experiments according nominal (BW) model

... fit with both nominal & alternative model

.... take the maximum of the absolute value of the differences

```
\pi\pi S-wave: Use K-matrix \pi\pi S-wave model instead of the nominal BW model
       \pi\pi P-wave: Change \rho(770) parameters according to PDG
                     Replace Gounaris-Sakurai by regular BW
                     Remove \rho(1450)
       \pi\pi D-wave: Zemach Tensor as the Spin Factor
       K\pi S-wave: Allow K_{0}^{*}(1430) mass and width to be determined from the fit
                     Use LASS parameterization with LASS parameters
       K\pi P-wave: Use B \rightarrow J/psi Ks \pi+ as control sample for K*(892) parameters
                     Allow K*(892) mass and width to be determined from the fit
       K\pi D-wave: Zemach Tensor as the Spin Factor
       Blatt-Weiskopf penetration factors
       No running width
       Dalitz plot normalization
Virginia Azzolin
```

GGSZ $D^0 \rightarrow K_s \pi \pi$ method

Cartesian Coordinates:

From previous studies, parameters ($r_{_{B'}} \gamma$, δ) badly behave statistically

No sensitivity to γ for $r_B < 0.1$ (+underestimated errors on γ and δ) \rightarrow Fit 4 cartesian coordinates (x±, y±)

 $x_{\pm} = \text{Re}(r_{B}e^{i(\delta\pm\gamma)})$ $y_{\pm} = \text{Im}(r_{B}e^{i(\delta\pm\gamma)})$

. Gaussian Errors on x, y (no unphysical zone)

... (x^+, y^+) , (x^-, y^-) uncorrelated ... Unbiased results $\forall r_{\tiny B}$

.... Easier to combine different results

Note: GLW results also sensitive to x_{\downarrow} and through the relations

$$\frac{x_{\pm}}{2} = \frac{R_{CP+}(1 \mp A_{CP+}) - R_{CP-}(1 \mp A_{CP-})}{4} \left[r_{B}^{2} = \frac{R_{CP+} + R_{CP-} - 2}{2} \right]$$
Virginia Azzolini
DPF-06

10

hep-ex/0607104 - 347 *10° BB pairs

GGSZ $D^0 \rightarrow K_\pi \pi$ method

GGSZ $D^0 \rightarrow K_{g}\pi\pi$ method

Comments on the results: Better precision on x,y wrt to Belle, σ_{γ} worse due to smaller measured central value of $r^{(*)}_{B}$

hep-ex/0507101 - 227 *10⁶ B<u>B</u> pairs

GGSZ $B \rightarrow D^{\circ}K^{*}$ ($K^{*} \rightarrow K_{S}\pi$), $D^{\circ} \rightarrow K_{S}\pi\pi$ method

Analogous to previous analysis, one additional fit parameter k to take into account non- resonant B \rightarrow D⁰K_S π background and r_B, δ_{B} variation across B Dalitz plot.

DPF-06

$GLW+ADS+GGSZ + sin(2\beta+\gamma)$: present and prospect

DPF-06

Joint Meeting of Pacific Region Particle Physics Communities

Measurement of the UT angle γ at BaBar Virginia Azzolini

backup

Selection of signal events

DPF-06

D^oK : PRD 73, 051105 - 232 *10⁶ BB pairs

GLW : results

 $B \rightarrow D^0 K$ PRD 73, 051105 232*10° BB $R_{CP+} = 0.90 \pm 0.12(stat.) \pm 0.04(syst.)$ $R_{CP} = 0.86 \pm 0.10(stat.) \pm 0.05(syst.)$ $A_{CP+} = 0.35 \pm 0.13$ (stat.) ± 0.04 (syst.) $A_{CP} = -0.06 \pm 0.13$ (stat.) ± 0.04 (syst.) $B \rightarrow D^0 K^*$ PRD 73, 071103 232*10° BB $R_{CP+} = 1.96 \pm 0.40(stat.) \pm 0.11(syst.)$ $R_{CP} = 0.65 \pm 0.26(stat.) \pm 0.08(syst.)$ $A_{CP+} = 0.08 \pm 0.19(stat.) \pm 0.08(syst.) A_{CP} = 0.26 \pm 0.40(stat.) \pm 0.12(syst.)$ $B \rightarrow D^{*0} K$ PRD 71, 031102 123*10° BB $R_{CP+} = 1.06 \pm 0.26(stat.) \pm 0.10(syst.)$ CP not reconstructed $A_{CP+} = 0.10 \pm 0.23(stat.) \pm 0.04(syst.)$. With current statistics, these DO NOT constrain (alone) γ/ϕ_3 nor $r^{(*)}_{B}$.. however, they provide <u>competitive</u> measurements of the cartesian coordinates x_{\perp} , used by Dalitz, through the relations $r_{\perp} = \frac{R_{CP+}(1 \mp A_{CP+}) - R_{CP-}(1 \mp A_{CP-})}{4}$ $r_{B}^{2} = \frac{R_{CP+} + R_{CP-} - 2}{2}$ $x_{\perp} = -0.082 \pm 0.053 \pm 0.018$, $x_{\perp} = 0.102 \pm 0.062 \pm 0.022$, $r_{R}^{2} = -0.12 \pm 0.08 \pm 0.03$ $B \rightarrow D^0 K$ $x_{\perp} = 0.32 \pm 0.18 \pm 0.07$, $x_{-} = 0.33 \pm 0.16 \pm 0.06$, $r_{_{\rm B}}^2 = 0.30 \pm 0.25$ $B \rightarrow D^0 K^*$ Virginia Azzolini **DPF-06**

GLW averages

Implications for r_B and γ see body of the talk

DPF-06

Virginia Azzolini

DPF-06

347 *10⁶ B<u>B</u> pairs BABAR-CONF-06/038

$B \rightarrow D^{(*)0}K, D^{0} \rightarrow K_{S}\pi^{+}\pi^{-}$

 $\forall \gamma \text{ (and } r^{(*)}{}_{B}, \delta^{(*)}{}_{B} \text{) from}$

 $\underbrace{\text{UPDATED}} \text{known } D^0 / \underline{D}^0 \rightarrow K_s \pi^+ \pi^- \text{ Dalitz model } \mathbf{f}_{\pm}(\mathbf{m}_+^2, \mathbf{m}_-^2) \qquad \text{m}_{\pm}^2 = \pi \left(\mathbb{K}_s^0 \pi^{\pm} \right)^2$

- B⁻/B⁺ decay rates vs m₊²,m₋²

$$\Gamma_{\rm BF}(m_{-}^2, m_{+}^2) \propto \left| f_{\rm F} \right|^2 + r_{B}^{(*)2} \left| f_{\pm} \right|^2 + 2\eta \left\{ x_{\rm F}^{(*)} \operatorname{Re} \left[f_{\pm}^* f_{\mp} \right] + y_{\mp}^{(*)} \operatorname{Im} \left[f_{\mp} f_{\pm}^* \right] \right\}$$

•Update of previous analysis with:

 $\mathbf{x}^{(*)}_{\pm} = \mathbf{r}^{(*)}_{B} \cos(\delta^{(*)}_{B} \pm \mathbf{\gamma})$ $\mathbf{y}^{(*)}_{\pm} = \mathbf{r}^{(*)}_{B} \sin(\delta^{(*)}_{B} \pm \mathbf{\gamma})$ $\mathbf{r}^{(*)2}_{B} = \mathbf{x}^{(*)2}_{\pm} + \mathbf{y}^{(*)2}_{\pm}$

- 1.5x more statistics
- More refined evaluation of systematic uncertainties (esp. Dalitz model one)
- Same Dalitz model (apart from K*(1430) parameters), larger $D^0/\underline{D}^0 \rightarrow K_s \pi \pi$ sample

DPF-06

Results on γ

- . HFAG averages for $x_{_\pm}$ = $r_{_B}$ cos($\delta_{_B}\pm\gamma$) , $y_{_\pm}$ = $r_{_B}$ sin($\delta_{_B}\pm\gamma$)
- . UTfit find γ = 78±30° based on $B^{\scriptscriptstyle -} \to D^{(*)} \; K^{(*) \scriptscriptstyle -}$ decays
- . Note: $\sigma_{_{\! Y}}$ depends significantly on the value of $r_{_B}$

CP violation in neutral B^0 decays \rightarrow time dependent

. Use interference b \rightarrow c<u>u</u>d / b \rightarrow u<u>c</u>d instead of b \rightarrow c<u>u</u>s/u<u>c</u>s to extract 2 β + γ

.. Wrt DK, the favored b \rightarrow c amplitude is $O(\lambda^2)$, the suppressed is $O(\lambda^4)$

- Higher yields

$$-r_{D(^{*})\pi} \equiv |A(B^{0} \rightarrow D^{(*)}\pi^{+})/A(B^{0} \rightarrow D^{(*)}\pi^{+})| \approx |V_{ub}V_{cd}|/|V_{cb}V_{ud}|$$

 \rightarrow Smaller asymmetries and sensitivity to γ

```
strong phase between b \rightarrow u and b \rightarrow c
```


.... In present experiments no hope to fit for
$$r^{(*)}$$

 \rightarrow determine elsewhere (B⁰ \rightarrow D_s^(*) π/ρ assuming SU(3), neglecting annihilation)

hep-ex/0604012 - 230 *10⁶ B<u>B</u> pairs

 $tan \theta$: Cabibbo angle

D(*) and Ds(*)

decay const

 $f_{D(*)}/f_{Ds(*)}$: ratio of

Observation of $B^0 \rightarrow D_s^{(*)+} \pi^-$, $D_s^{(*)-} K^+$

$$\begin{array}{l} \sin(2\beta+\gamma) \text{ in } B^{0} \rightarrow D^{(*)_{\mp}} \pi^{\pm} \quad \text{needs} \quad r(D^{(*)}\pi) = |A(B^{0} \rightarrow D^{(*)_{+}} \pi)/A(B^{0} \rightarrow D^{(*)_{-}} \pi^{+})| \\ & \text{but} \\ \text{current available data} \xrightarrow{\rightarrow} \text{direct BF measurement} \end{array}$$

$$r(D^{(*)}\pi) \stackrel{\bullet}{=} \tan \theta_c \frac{f_{D^{(*)}}}{f_{D_s^{(*)}}} \sqrt{\frac{\mathcal{B}(B^0 \to D_s^{(*)+}\pi^-)}{\mathcal{B}(B^0 \to D^{(*)-}\pi^+)}}$$

measured BF throught D_s^+ reco in

 $D_s\!\!\rightarrow \varphi \pi, \quad K^0{}_S K^+ \mbox{ and } K^{*0} K^+ \mbox{ modes}$:

BF (B⁰
$$\rightarrow$$
D_s⁺ π -) = (1.3 ± 0.3 ± 0.2) * 10⁻⁵
BF(B⁰ \rightarrow D_s^{*+} π -) = (2.8 ± 0.6 ± 0.5) * 10⁻⁵

r(D π) = (1.3 ± 0.2 ± 0.1) * 10⁻² (30% smaller) r(D* π) = (1.9 ± 0.2 ± 0.2) * 10⁻² (25% larger)

 \rightarrow Improved $\sigma_{\! r}$ but smaller <r>

 \rightarrow expect no big improvement on $\sigma(2\beta+\gamma)$

hep-ex/0604106 - 226 *10⁶ B<u>B</u> pairs PRD73:071103 - 230 *10⁶ B<u>B</u> pairs

Sin($2\beta + \gamma$) from $B \rightarrow D^{(*)0}K^0$ and $D^{(*)}a_{0(2)}$?

DPF-06

Experimental technique

5. Compute the proper time difference $\Delta t \cong \Delta z / \gamma \beta c$ (RMS ~1.1 ps) 6. Fit the Δt spectra

BABAR : where? what? who?

BABAR collaboration consists 11 countries and ~590 physicists !

DPF-06

References

γ. $r_{R}^{(*)}$, theoretical expectation value: Phys. Lett B265, 172 (1991), PL B557, 198 (2003)

Gronau-London-Wyler method: Phys. Lett. B253, 483; Phys. Lett. B265, 172 (1991) PRD 73, 051105 – 232 *10⁶ B<u>B</u> . D⁰K : PRD 73, 071103 – 232 *10⁶ B<u>B</u> . D⁰K*: PRD 71, 031102 – 123 *10⁶ BB . D*⁰K:

Atwood-Dunietz-Sony method : Phys. Rev. Lett. 78, 3257 (1997) . D(*)⁰K: PRD 72, 032004 – 232 *10⁶ B<u>B</u> PRD 72, 071104 – 232 *10⁶ B<u>B</u> . D^{0*}K: hep-ex/0607065 - 226 *10⁶ BB . $D^{0}[K^{+}p^{-}p^{0}]K$:

Giri-Grossman-Soffer-Zupan (Dalitz) method: Phys. Rev. D68, 054018 (2003) . D(*)⁰K: hep-ex/0607104 - 347 *10⁶ BB hep-ex/0507101 - 227 *10⁶ BB . DK*:

 $2\beta + \gamma$: $B^{0} \rightarrow D^{(*)} \pi/\rho$:

PRD73 :111101 - 232 *10⁶ B<u>B</u> , PRD71:112003- 232 *10⁶ B<u>B</u> . B⁰ → D_s^{(*)+} π− , D_s^{(*)-} K ⁺: hep-ex/0604012 - 230 *106 B<u>B</u>