Resummation and fragmentation in $p \bar{p}' \rightarrow \gamma \gamma X$

Pavel Nadolsky

Argonne National Laboratory

October 31, 2006

C. Balazs, E. Berger, **P. N.**, C.-P. Yuan, Phys. Lett., B637, 235 (2006); hep-ph/0611xxx

Today: NNLL/NLO Q_T resummation for $\gamma\gamma$ event distributions Tomorrow in Higgs/Top/EW session: application to Higgs searches

Pavel Nadolsky (ANL)

Distributions of $\gamma\gamma$ pairs...

- ...are measured with increasing precision at the Tevatron
- ...constitute a large irreducible background in searches for light Higgs bosons in $H \rightarrow \gamma \gamma$ decay channel at the LHC
 - assumptions about the γγ transverse momenta Q₇ affect significance of Higgs discovery and measurements of Higgs production cross sections (see tomorrow's talk)
- ... test rich properties of QCD interactions!
 - large radiative contributions distributed in a complex kinematical pattern

Isolated prompt diphotons

Definition

Prompt photons = photons produced directly in perturbative QCD scattering or via parton fragmentation

as opposed to nonperturbative photon production in π , η decays, etc. (suppressed by isolation)

- Several classes of production processes
 - direct production
 - single-photon fragmentation
 - Iow-Q diphoton fragmentation

Several sources of enhanced logarithmic corrections

- Q_T logarithms from initial-state radiation \Rightarrow resummation
- ▶ final-state collinear singularities ⇒ fragmentation functions

Theoretical studies of $\gamma\gamma$ production

- Successful computations of γγ cross sections by many groups; some relevant questions are still unanswered
 - Perturbative contributions to direct γγ production Aurenche et al.; Berger, Braaten, Field; Bailey, Owens, Ohnemus; Balazs, PN, Schmidt, Yuan; de Florian, Kunzst; Bern, De Freitas, Dixon; Bern, Dixon, Schmidt; Del Duca, Maltoni, Nagy, Trocsanyi;...
 - Resummation of initial-state Q_T logarithms Balazs, Berger, Mrenna, Yuan; Balazs, PN, Schmidt, Yuan; Catani, de Florian, Grazzini; PN, Schmidt;...
 - γγ production via final-state fragmentation at NLO Binoth, Guillet, Pilon, Werlen;...

Our new study

- computes NNLL/NLO resummed Q₁ distributions for direct production
- includes essential information about photon fragmentation
- Numerical implementation: improved MC integrator program ResBos (publicly available and user-friendly)

Pavel Nadolsky (ANL)

Direct diphotons

The dominant production mode; evaluated up to NLO in α_s

Balazs, Berger, Nadolsky, Yuan, 2006

$q\bar{q} + qg$ channel

- NLO matrix elements: Aurenche et al.; Bailey, Owens, Ohnemus
- qq̄ scattering dominates at the Tevatron
- gg scattering is strongly enhanced at the LHC by photon radiation off final-state quarks

Direct diphotons

The dominant production mode; evaluated up to NLO in α_s

gg + gq channel (via the quark box)

contributes ~ 20% at the LHC

NLO gg matrix

elements: Balazs, PN, Schmidt, Yuan; de Florian, Kunzst; Bern, De Freitas, Dixon; Bern, Dixon, Schmidt

gq matrix element: derived from the qqggg matrix element

Pavel Nadolsky (ANL)

Q_T resummation

At $Q_T \ll Q$:

 $\begin{pmatrix} \frac{d\sigma}{dQ_T^2} \end{pmatrix}_{Q_T^2 \ll Q^2} \approx \sum_{k=0}^{\infty} \alpha_s^k \left[c_k \delta(\vec{Q}_T) + Q_T^{-2} \cdot \sum_{n=0}^{2k-1} d_{nk} \ln^n (Q^2/Q_T^2) \right];$ the large logarithms are summed up to NNLL accuracy in all channels using impact-parameter method (Collins, Soper, Sterman)

$$\left(rac{d\sigma}{dQ_T^2}
ight) = \int rac{d^2ec{b}}{(2\pi)^2} e^{iec{Q}_T \cdot ec{b}} \widetilde{W}(b, \mathcal{Q}) + \left(rac{d\sigma}{dQ_T^2}
ight)_{NLO} - ext{overlap}$$

resummed functions \mathcal{A} , \mathcal{B} , $\mathcal{P}(x, b) = (\mathcal{C} \otimes f)(x, b)$ in W(b, Q) are evaluated up to orders α_s^3 , α_s^2 , α_s

A⁽³⁾ derived by Moch, Vermaseren, Vogt

■ the resummed cross section (valid at Q_T ≪ Q) is combined with the NLO cross section (valid at Q_T ≈ Q)

Pavel Nadolsky (ANL)

Born contribution

- Described by a loop diagram with a complicated spin structure
- nonzero matrix elements for all 16 combinations of photon and gluon spins
- incomplete spin factorization between the hard-scattering contribution and PDF spin matrices
- in addition to conventional (spin-diagonal)
 k_T-dependent PDF, a new "spin-flip" k_T-dependent
 PDF arises and changes azimuthal angle
 dependence
- the "spin-flip" terms need not to be small compared to the spin-diagonal terms

Pavel Nadolsky (ANL)

gg NLO contribution

 $\mathcal{O}(\alpha_s^3)$ 1-loop 5-leg (pentagon) diagrams

- are derived in the helicity amplitude formalism from 1-loop ggggg amplitude in Bern, Dixon, Kosower, 1991
- numerically agree with the "sector decomposition" calculation (Binoth, Guillet, Mahmoudi, 2003)
- Small-Q₇ limit is derived at the matrix-element level with the splitting amplitude method (Bern, Chalmers, Dixon, Dunbar, Kosower)
- Soft singularities are cancelled against 2-loop box diagrams (Bern, De Freitas, Dixon; P.N., Schmidt)
- Collinear singularities are resummed in the conventional and spin-flip gluon PDF's

000

gq 5-leg matrix element

Obtained from the color-decomposed qqggg matrix element (Bern, Dixon, Kosower, 1995) by replacement of two SU(3) generator matrices T^a_{cd} by identity matrices I_{cd}

 $\mathcal{M}_{5}(q_{1i}, \bar{q}_{2j}, g_{3}^{a_{3}}, g_{4}^{a_{4}}, g_{5}^{a_{5}}) \\ \sim g^{5} \sum_{\sigma \in S_{3}^{(345)}} (T^{\sigma_{3}} T^{\sigma_{4}} T^{\sigma_{5}})_{ij} A_{5;1}^{L,[1/2]}(1_{q}, 2_{\bar{q}}; \sigma_{3}, \sigma_{4}, \sigma_{5}) + \dots$

To obtain $\mathcal{M}_5(q_{1i}, \bar{q}_{2j}, \gamma_3, \gamma_4, g_5^{\alpha_5})$, replace $gT_{cd}^{\alpha_{3,4}} \rightarrow ee_i\sqrt{2}\mathcal{I}_{cd}$

Pavel Nadolsky (ANL)

gq 5-leg matrix element

- $\mathcal{M}_5(gq \rightarrow \gamma\gamma q)$ correctly reproduces its known behavior in the collinear asymptotic limit ($Q_T \rightarrow 0$)
- It disagrees with an earlier calculation (Yasu), which does not have this asymptotic behavior

gq 5-leg matrix element

The *gq* contribution is subleading in the inclusive rate, but has more pronounced effect at high *Q*₇ (improves matching)

gq 5-leg matrix element

The *gq* contribution is subleading in the inclusive rate, but has more pronounced effect at high *Q*₇ (improves matching)

Fragmentation model

The *qg* fragmentation collinear singularity is removed by combination of quasi-experimental isolation at $Q_T > E_T^{iso}$, and subtraction or smooth-cone isolation at $Q_T \le E_T^{iso}$

sufficient for description of fragmentation contributions at the Tevatron and LHC approximately reproduces the inclusive

reproduces the inclusive NLO fragmentation rate (Binoth et al.; DIPHOX program) at both colliders

good agreement with the Tevatron data

Comparison with the CDF Run-2 data

The NLO prediction (blue) diverges at low q_T

The resummed prediction (red) agrees with the data at all q_T ; matches the NLO prediction at large q_T

Pavel Nadolsky (ANL)

$\gamma\gamma$ production at the LHC

 $E_T^{iso} = 15 \text{ GeV}, \Delta R_{cone} = 0.4; \text{ preliminary}$

 $pp \rightarrow \gamma \gamma X, \sqrt{S} = 14 \text{ TeV}, \text{ ATLAS cuts}$

 $q\bar{q}: qg: (gg + gq) = 30:50:20$

(compare with $q\bar{q}: qg: (gg+gq) =$ 70:20:10 at the Tevatron)

 $\mathcal{O}(\alpha_s^2)$ corrections to qg are likely important $(\sigma_{NNLO}/\sigma_{NLO} \sim 20\%?)$

$\gamma\gamma$ production at the LHC

 $E_T^{iso} = 15 \text{ GeV}, \Delta R_{cone} = 0.4; \text{ preliminary}$

■ DIPHOX agrees with the resummation at large q_T ; exhibits integrable logarithmic singularities at $q_T < E_T^{iso}$ (E_T^{iso} is the isolation energy)

RESBOS shows a mild discontinuity at $q_T = E_T^{iso}$

Pavel Nadolsky (ANL)

$\gamma\gamma$ production at the LHC

 $E_T^{iso} = 15 \text{ GeV}, \Delta R_{cone} = 0.4; \text{ preliminary}$

Pavel Nadolsky (ANL)

Summary of new features

- resummation at full NNLL accuracy in **direct** $q\bar{q} + qg$ and gg + gq channels
- improved treatment of the fragmentation region
 - improved model for nonperturbative resummed contributions (A. Konychev, P. N., PLB 633, 710 (2006))
 - non-pert. terms constrained by low-Q and Tevatron Z data
- resummed form factor in two resummation schemes
- automated matching at the NTUPLE level; optimized Monte-Carlo integration
- applications to Higgs boson search tomorrow!