$h \rightarrow \gamma \gamma$ at the LHC: resummed predictions for the signal and background

Pavel Nadolsky

Argonne National Laboratory

November 1, 2006

C. Balazs, E. Berger, P. N., C.-P. Yuan, Phys. Lett., B637, 235 (2006); hep-ph/0611xxx

Yesterday: NNLL/NLO $\mathsf{Q}_{\bar{\mathsf{I}}}$ resummation for $\gamma\gamma$ event distributions **Today:** application to Higgs searches

Light Higgs boson search at the LHC

- \blacksquare The standard model and its extensions (MSSM) suggest existence of a Higgs scalar with a mass $115 \leq M_H \leq 140$ GeV
- \Box gg \rightarrow h \rightarrow $\gamma\gamma$ (via t-quark loop) is the leading search mode in this mass region
- \blacksquare A 5σ discovery of SM Higgs boson is possible with $\mathcal{L} = 10 - 30$ fb⁻¹

E Prospects for Higgs discovery and cross section measurement in the $\gamma\gamma$ mode depend, among many factors, on the physics model (SM, MSSM, etc.) and form of signal and background event distributions

Light Higgs boson search at the LHC

 \blacksquare The standard model and its extensions (MSSM) suggest existence of a Higgs scalar with a mass $115 \leq M_H \leq 140$ GeV

 \blacksquare gg \rightarrow h \rightarrow $\gamma\gamma$ (via t-quark loop) is the leading search mode in this mass region

 \blacksquare A 5σ discovery of SM Higgs boson is possible with $\mathcal{L} = 10 - 30$ fb⁻¹

E Prospects for Higgs discovery and cross section measurement in the $\gamma\gamma$ mode depend, among many factors, on the physics model (SM, MSSM, etc.) and form of signal and background event distributions

Higgs signal discrimination is improved by considering differential event rates

Effect on significance

ا ل

■ "Model-independent" resonance search \blacktriangle Sliding $M_{\gamma\gamma}$ window: unknown position of the resonance

 \blacktriangle unbinned likelihood analysis \Uparrow

 \blacksquare Search for a color-neutral spin-0 particle ▲ differential likelihood analysis \triangle discrimination based on p_T & decay angles

 \blacksquare Acceptance & efficiency depend on $\gamma\gamma$ kinematical distributions; \mathbf{Q}_T dependence propagates into the discovery significance and measured Higgs cross sections

> $N^{\gamma\gamma}_{observed} = \epsilon(Q_T, ...)N^{\gamma\gamma}_{produced};$ $S/$ √ $\overline{B} \propto \epsilon_{\rm S}/\sqrt{\epsilon_{\rm B}};$

> > ...

- \blacksquare SM $\gamma\gamma$ production provides a "standard candle" benchmark required for the $\sigma(pp \to H \to \gamma\gamma)$ measurement
- \blacksquare Many distributions (including $d\sigma/dQ$) depend on $d\sigma/dQ_T$ because of p_{τ}^{γ} $\frac{\gamma}{I}$ cuts
	- \blacktriangleright unphysical discontinuities in fixed-order calculations destabilize predictions for $d\sigma/dQ$, etc. \Rightarrow resummation

- **E** Predictions for $\gamma\gamma$ production are most reliable for $\mathsf{E}^\mathsf{iso}_I \lesssim \mathsf{Q}$ ($\mathsf{E}^\mathsf{iso}_I$ is the photon isolation energy)
	- \blacktriangleright photon fragmentation and other large corrections are strongly enhanced outside of this region!

E Predictions for $\gamma\gamma$ production are most reliable for $\mathsf{E}^\mathsf{iso}_I \lesssim \mathsf{Q}$ ($\mathsf{E}^\mathsf{iso}_I$ is the photon isolation energy)

 \triangleright photon fragmentation and other large corrections are strongly enhanced outside of this region!

Unknown or uncertain contributions

t−channel singularity $(Q_T = 0)$; excluded by min p_t^{γ} $^\gamma_I$ cuts

• Predictions for $\gamma\gamma$ production are most reliable for $\mathsf{E}^\mathsf{iso}_I \lesssim \mathsf{Q}$ ($\mathsf{E}^\mathsf{iso}_I$ is the photon isolation energy)

 \triangleright photon fragmentation and other large corrections are strongly enhanced outside of this region!

Unknown or uncertain contributions

t−channel enhancement; not excluded at $Q_T > Q$

E Predictions for $\gamma\gamma$ production are most reliable for $\mathsf{E}^\mathsf{iso}_I \lesssim \mathsf{Q}$ ($\mathsf{E}^\mathsf{iso}_I$ is the photon isolation energy)

 \triangleright photon fragmentation and other large corrections are strongly enhanced outside of this region!

Unknown or uncertain contributions

 000

t−channel enhancement; not excluded at $Q_T > Q$

Single-γ fragmentation; enhanced at $\mathsf{Q}_I < E_I^{\text{iso}}$ or $\mathsf{Q}_I > \mathsf{Q}$

E Predictions for $\gamma\gamma$ production are most reliable for $\mathsf{E}^\mathsf{iso}_I \lesssim \mathsf{Q}$ ($\mathsf{E}^\mathsf{iso}_I$ is the photon isolation energy)

 \blacktriangleright photon fragmentation and other large corrections are strongly enhanced outside of this region!

Unknown or uncertain contributions

t−channel enhancement; not excluded at $Q_T > Q$

Single-γ fragmentation; enhanced at $\mathsf{Q}_I < E_I^{\text{iso}}$ or $\mathsf{Q}_I > \mathsf{Q}$

low-Q $\gamma\gamma$ fragmentation; $Q_T \gtrsim Q$

Resummation for $γγ$ background

- \blacksquare \lhd _T resummation at NNLL/NLO accuracy in **direct** $q\bar{q} + qg$ and $qa + qa$ channels
- \blacksquare improved treatment of the fragmentation region
- improved model for nonperturbative resummed contributions
- \blacksquare resummed form factor in two resummation schemes
- continuous distributions commuous aismoan
d $\sigma/$ (d \vec{p}_{γ_3} d \vec{p}_{γ_4}); MC integration in revised ResBos

Resummed distributions for SM Higgs

I compare normalized distributions in $\mathsf{Q}_{\mathcal{T}},$ photon's polar angle θ_* and azimuthal angle φ_* in the Collins-Soper $\gamma\gamma$ rest frame; the figures are preliminary!

- \blacksquare Higgs signal for $M_H = 130$ GeV: the resummed cross section from Balazs, Yuan, 2001, upgraded to NNLL/NLO
- \blacksquare QCD background for $128 < M_{\gamma\gamma} < 132$ GeV
	- \blacktriangleright $p_l^{\gamma} > 40$ (25) GeV for the harder (softer) photon
	- rapidity $|y_{\gamma}| < 2.5$; $\Delta R_{\gamma\gamma} > 0.4$
	- ► Photon isolation: $E_I^{hadron} < 15$ GeV in $\Delta R_{cone} = 0.4$ around each photon
	- \blacktriangleright CTEQ6M PDF's

Transverse momentum (Q_T) distributions

Resummation of ISR logs predicts the signal Q_T **spectrum to** be harder than the background Q_T spectrum

In the leading Sudakov (cusp) functions in $q\bar{q} + q\bar{q} \rightarrow \gamma\gamma$ and $gg + gg \rightarrow H$ satisfy $A_{qq}(\mu) = (C_A/C_F)A_{q\bar{q}}(\mu) = (9/4)A_{q\bar{q}}(\mu)$

However, FSR and isolation model affect the background Q_T spectrum at the level comparable to ISR resummation (increased uncertainties!) **E** Better discrimination based on

 $d\sigma/dQ_T$ may be achieved in the future by tightening photon isolation and constraining FSR contributions in measurements at \bigcirc away from M_H

Polar angle (θ∗) distributions

Collins-Soper frame

- Higgs scalar decay is isotropic; suppressed at $\cos\theta_* = \pm 1$ by p_T^{γ} $_{I}^{\gamma}$ cuts
- The $t-$ and u-channel background contributions peak at $\cos \theta_* = \pm 1$

Polar angle (θ∗) distributions

Lab frame

- A related observable is $y_* \equiv (y_{hard} - y_{soft})/2$ (Bern, Dixon, Schmidt)
- An NLO distribution exhibits a kinematical singularity at $y^* \approx 0.94$, caused by incomplete cancellation of real and virtual corrections at $Q_{\rm \scriptscriptstyle T} \approx 0$
- Our calculation predicts a continuous y [∗] distribution as a result of resummation of the small- $\mathsf{Q}_\mathcal{T}$ singularity

Polar angle (θ∗) distributions

Lab frame

- A related observable is $y_* \equiv (y_{hard} - y_{soft})/2$ (Bern, Dixon, Schmidt)
- An NLO distribution exhibits a kinematical singularity at $y^* \approx 0.94$, caused by incomplete cancellation of real and virtual corrections at $Q_{\tau} \approx 0$
- \blacksquare Our calculation predicts a continuous y [∗] distribution as a result of resummation of the small- $\mathsf{Q}_\mathcal{T}$ singularity

Azimuthal angle (ϕ∗) distributions

Collins-Soper frame

- φ_* is the angle between the plane of hadronic momenta \vec{p}_1 and \vec{p}_2 and the plane of photonic momenta \vec{p}_3 and \mathcal{D}_A
- \blacksquare Higgs scalar decay is isotropic; suppressed at $\varphi_* = 0$ or π by the isolation
- **E** FSR background peaks at $\varphi_* = 0$ or π

Azimuthal angle (ϕ∗) distributions

Lab frame

- \blacksquare A related observable is $|\varphi_{3I}-\varphi_{4I}|$, with $\varphi_{i\overline{l}} \equiv \pi - \arccos \frac{\vec{Q}_{\overline{l}} \cdot \vec{\rho}_{\overline{l}}^{\gamma_i}}{Q_{\overline{l}} \vec{\epsilon}_{\overline{l}}^{\gamma_i}}$ for $i = 3, 4$; ($0 \le \varphi_{iT} \le \pi$)
- $\blacksquare\,\,|\varphi_{3I}-\varphi_{4I}|$ is a measure of closeness of unobserved QCD radiation to one of the photons
- \blacksquare FSR background prefers $|\varphi_{3I} - \varphi_{4I}| > \pi/2$, while the signal likes $\varphi_{3T} \sim \varphi_{4T}$

Conclusions

- \blacksquare Information about the shape of diphoton Q_T , θ_* , and φ_* distributions increases discrimination power of the likelihood analysis
- \blacksquare Radiative corrections have strong kinematic dependence. Selection of $\gamma\gamma$ events at $\mathit{E}_{I}^{\mathsf{iso}}\lesssim\mathsf{Q}_{\mathit{I}}\lesssim\mathsf{Q}$, central θ_* and φ_* increases the signal significance, while reducing theory uncertainties

■ Our NNLL/NLO resummation calculation improves understanding of Higgs signal and background. It will be nevertheless important to experimentally examine $\gamma\gamma$ distributions in a wide range of \bigcirc to facilitate further improvements in theory