$h \rightarrow \gamma \gamma$ at the LHC: resummed predictions for the signal and background

Pavel Nadolsky

Argonne National Laboratory

November 1, 2006

C. Balazs, E. Berger, P. N., C.-P. Yuan, Phys. Lett., B637, 235 (2006); hep-ph/0611xxx

Yesterday: NNLL/NLO Q_T resummation for $\gamma\gamma$ event distributions Today: application to Higgs searches

Pavel Nadolsky (ANL)

Light Higgs boson search at the LHC

The standard model and its extensions (MSSM) suggest existence of a Higgs scalar with a mass $115 \leq M_H \leq 140$ GeV

gg \rightarrow **h** $\rightarrow \gamma \gamma$ (via *t*-quark loop) is the leading search mode in this mass region

• A 5σ discovery of SM Higgs boson is possible with $\mathcal{L} = 10 - 30 \text{ fb}^{-1}$

Prospects for Higgs discovery and cross section measurement in the $\gamma\gamma$ mode depend, among many factors, on the physics model (SM, MSSM, etc.) and form of signal and background event distributions

Pavel Nadolsky (ANL)

Light Higgs boson search at the LHC

The standard model and its extensions (MSSM) suggest existence of a Higgs scalar with a mass $115 \leq M_H \leq 140$ GeV

g $g \rightarrow h \rightarrow \gamma \gamma$ (via *t*-quark loop) is the leading search mode in this mass region

• A 5σ discovery of SM Higgs boson is possible with $\mathcal{L} = 10 - 30 \text{ fb}^{-1}$

Prospects for Higgs discovery and cross section measurement in the $\gamma\gamma$ mode depend, among many factors, on the physics model (SM, MSSM, etc.) and form of signal and background event distributions

Pavel Nadolsky (ANL)

Higgs signal discrimination is improved by considering differential event rates
Effect on

significance Model-independent" resonance search Sliding $M_{\gamma\gamma}$ window: unknown position of the resonance

unbinned likelihood analysis

Search for a color-neutral spin-0 particle
 ▲ differential likelihood analysis
 ▲ discrimination based on p_T & decay angles

≙

≙

Acceptance & efficiency depend on γγ kinematical distributions; Q₇ dependence propagates into the discovery significance and measured Higgs cross sections

 $\begin{array}{lll} \mathcal{N}_{observed}^{\gamma\gamma} &=& \epsilon(\mathbf{Q}_{T},...)\mathcal{N}_{produced}^{\gamma\gamma}; \\ \mathcal{S}/\sqrt{B} &\propto& \epsilon_{S}/\sqrt{\epsilon_{B}}; \end{array}$

SM $\gamma\gamma$ production provides a "standard candle" benchmark required for the $\sigma(pp \rightarrow H \rightarrow \gamma\gamma)$ measurement

Many distributions (including $d\sigma/dQ$) depend on $d\sigma/dQ_T$ because of p_T^{γ} cuts

► unphysical discontinuities in fixed-order calculations destabilize predictions for dσ/dQ, etc. ⇒ resummation

Pavel Nadolsky (ANL)

- Predictions for $\gamma\gamma$ production are most reliable for $E_T^{iso} \leq Q_T \leq Q$ (E_T^{iso} is the photon isolation energy)
 - photon fragmentation and other large corrections are strongly enhanced outside of this region!

Predictions for $\gamma\gamma$ production are most reliable for $E_T^{iso} \leq Q_T \leq Q$ (E_T^{iso} is the photon isolation energy)

photon fragmentation and other large corrections are strongly enhanced outside of this region!

Unknown or uncertain contributions

t-channel singularity ($Q_T = 0$); excluded by min p_T^{γ} cuts

Pavel Nadolsky (ANL)

Predictions for $\gamma\gamma$ production are most reliable for $E_T^{iso} \leq Q_T \leq Q$ (E_T^{iso} is the photon isolation energy)

photon fragmentation and other large corrections are strongly enhanced outside of this region!

Unknown or uncertain contributions

t-channel enhancement; not excluded at $Q_T > Q$

Pavel Nadolsky (ANL)

Predictions for $\gamma\gamma$ production are most reliable for $E_T^{iso} \leq Q_T \leq Q$ (E_T^{iso} is the photon isolation energy)

photon fragmentation and other large corrections are strongly enhanced outside of this region!

Unknown or uncertain contributions

t-channel enhancement; not excluded at $Q_T > Q$ Single- γ fragmentation; enhanced at $Q_T < E_T^{iso}$ or $Q_T > Q$

Pavel Nadolsky (ANL)

Predictions for $\gamma\gamma$ production are most reliable for $E_T^{iso} \leq Q_T \leq Q$ (E_T^{iso} is the photon isolation energy)

photon fragmentation and other large corrections are strongly enhanced outside of this region!

Unknown or uncertain contributions

t-channel enhancement; not excluded at $Q_T > Q$ Single- γ fragmentation; enhanced at $Q_T < E_T^{iso}$ or $Q_T > Q$

low-Q $\gamma\gamma$ fragmentation; Q₁ \gtrsim Q

Pavel Nadolsky (ANL)

Resummation for $\gamma\gamma$ background

- Solution Q_T resummation at NNLL/NLO accuracy in **direct** $q\bar{q} + qg$ and gg + gq channels
- improved treatment of the fragmentation region
- improved model for nonperturbative resummed contributions
- resummed form factor in two resummation schemes
- Continuous distributions $\frac{d\sigma}{(d\vec{p}_{\gamma_3}d\vec{p}_{\gamma_4})}$; MC integration in revised ResBos

Pavel Nadolsky (ANL)

Resummed distributions for SM Higgs

I compare normalized distributions in Q_T , photon's polar angle θ_* and azimuthal angle φ_* in the Collins-Soper $\gamma\gamma$ rest frame; the figures are preliminary!

- Higgs signal for $M_H = 130$ GeV: the resummed cross section from *Balazs, Yuan, 2001*, upgraded to NNLL/NLO
- **QCD** background for $128 < M_{\gamma\gamma} < 132$ GeV
 - $p_T^{\gamma} > 40 \, (25)$ GeV for the harder (softer) photon
 - rapidity $|y_{\gamma}| < 2.5; \Delta R_{\gamma\gamma} > 0.4$
 - ► Photon isolation: $E_T^{hadron} < 15 \text{ GeV}$ in $\Delta R_{cone} = 0.4$ around each photon
 - CTEQ6M PDF's

Transverse momentum (Q_T) distributions

Resummation of ISR logs predicts the signal Q₁ spectrum to be harder than the background Q₁ spectrum

► the leading Sudakov (cusp) functions in $q\bar{q} + qg \rightarrow \gamma\gamma$ and $gg + gq \rightarrow H$ satisfy $A_{gg}(\mu) = (C_A/C_F)A_{q\bar{q}}(\mu) = (9/4)A_{q\bar{q}}(\mu)$

However, FSR and isolation model affect the background Q_7 spectrum at the level comparable to ISR resummation (increased uncertainties!)

Better discrimination based on $d\sigma/dQ_T$ may be achieved in the future by tightening photon isolation and constraining FSR contributions in measurements at Q away from M_H

Pavel Nadolsky (ANL)

Polar angle (θ_*) distributions

Collins-Soper frame

- Higgs scalar decay is isotropic; suppressed at cos θ_{*} = ±1 by p^γ_T cuts
- The *t* and *u*-channel background contributions peak at $\cos \theta_* = \pm 1$

Pavel Nadolsky (ANL)

Polar angle (θ_*) distributions

Lab frame

- A related observable is $y_* \equiv (y_{hard} - y_{soft})/2$ (Bern, Dixon, schmidt)
- An NLO distribution exhibits a kinematical singularity at $y^* \approx 0.94$, caused by incomplete cancellation of real and virtual corrections at $Q_T \approx 0$
- Our calculation predicts a continuous y* distribution as a result of resummation of the small-Q_T singularity

Polar angle (θ_*) distributions

Lab frame

- A related observable is $y_* \equiv (y_{hard} y_{soft})/2$ (Bern, Dixon, Schmidt)
- An NLO distribution exhibits a kinematical singularity at $y^* \approx 0.94$, caused by incomplete cancellation of real and virtual corrections at $Q_T \approx 0$
- Our calculation predicts a continuous y* distribution as a result of resummation of the small-Q_T singularity

Azimuthal angle (φ_*) distributions

Collins-Soper frame

- φ_* is the angle between the plane of hadronic momenta \vec{p}_1 and \vec{p}_2 and the plane of photonic momenta \vec{p}_3 and \vec{p}_4
- Higgs scalar decay is isotropic; suppressed at φ_{*} = 0 or π by the isolation
- FSR background peaks at $\varphi_* = 0$ or π

Pavel Nadolsky (ANL)

Azimuthal angle (φ_*) distributions

Lab frame

- A related observable is $|\varphi_{3T} - \varphi_{4T}|$, with $\varphi_{iT} \equiv \pi - \arccos \frac{\vec{\omega}_{T} \cdot \vec{p}_{T}^{\gamma_{i}}}{\Theta_{T} E_{T}^{\gamma_{i}}}$ for i = 3, 4; ($0 \le \varphi_{iT} \le \pi$)
- $|\varphi_{3T} \varphi_{4T}|$ is a measure of closeness of unobserved QCD radiation to one of the photons
- FSR background prefers $|\varphi_{3T} \varphi_{4T}| > \pi/2$, while the signal likes $\varphi_{3T} \sim \varphi_{4T}$

Pavel Nadolsky (ANL)

Conclusions

- Information about the shape of diphoton Q₇, θ_{*}, and φ_{*} distributions increases discrimination power of the likelihood analysis
- Radiative corrections have strong kinematic dependence. Selection of $\gamma\gamma$ events at $E_T^{iso} \leq Q_T \leq Q$, central θ_* and φ_* increases the signal significance, while reducing theory uncertainties
- Our NNLL/NLO resummation calculation improves understanding of Higgs signal and background. It will be nevertheless important to experimentally examine γγ distributions in a wide range of Q to facilitate further improvements in theory