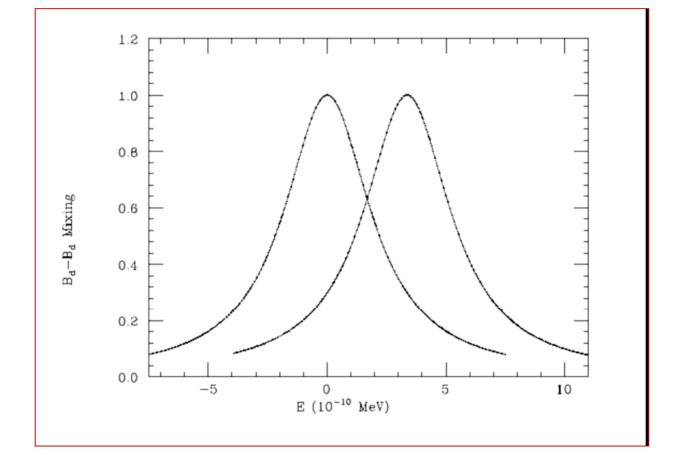

#### Charm Theory [Mixing, Rare Decays]

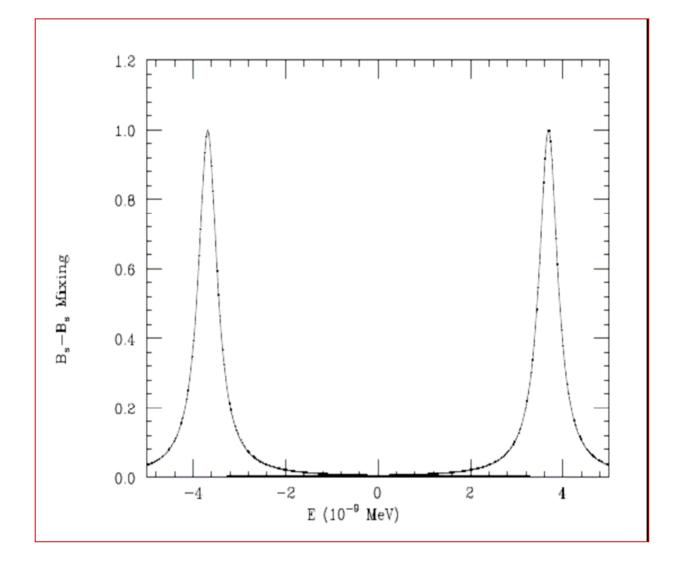
Gene Golowich UMass-Amherst

APS/JPS 2006 Honolulu HI (10/31/06)

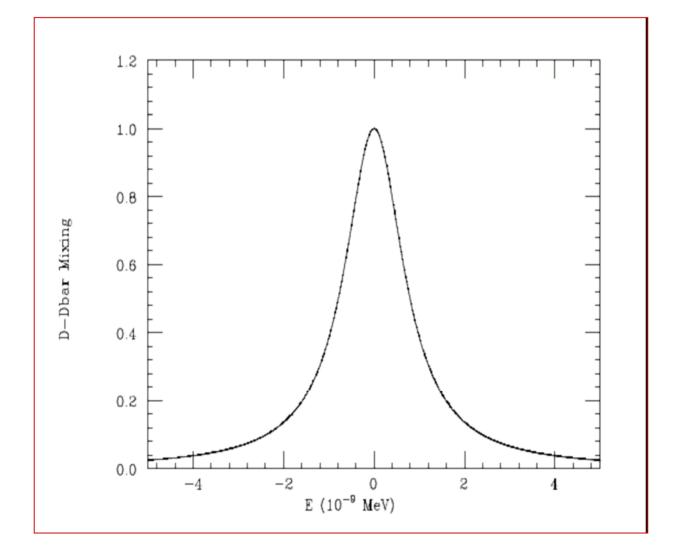



# **Mixing Outline**

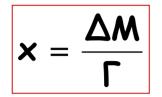
- Current Status of Mixing
  K, B<sub>d</sub>, B<sub>s</sub>, D
- D Mixing in the Standard Model
  (i) Quarks (ii) Hadrons
- New Physics and ΔΓ<sub>D</sub>
  GPP hep-ph/0610039
- New Physics and △M<sub>D</sub>
  GHPP hep-ph/06xxxxx


# Mixing of K Mesons




# Mixing of B<sub>d</sub> Mesons




# Mixing of B<sub>s</sub> Mesons



# Mixing of D<sup>0</sup> Mesons

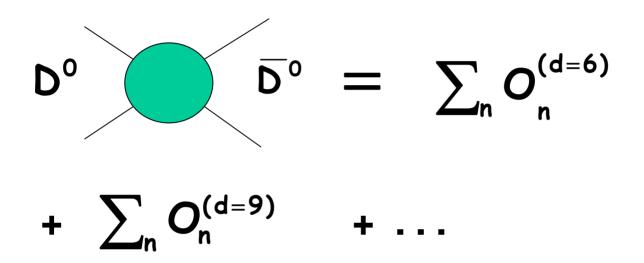


# Existing D<sup>0</sup> Bounds



x < 0.029 (PDG)

$$y = \frac{\Delta\Gamma}{2\Gamma}$$


 $y = 0.007 \pm 0.005$  (PDG)

# y [in %] from Decay RatesE791 $0.8 \pm 2.9 \pm 1.0$ FOCUS $3.4 \pm 1.4 \pm 0.7$ CLEO $-1.2 \pm 2.5 \pm 1.4$ BaBar $0.8 \pm 0.4 \pm 0.4$ Belle (tagged) $1.2 \pm 0.7 \pm 0.4$ Belle (untggd) $-0.5 \pm 1.0 \pm 0.8$ (Average [%] = $0.9 \pm 0.4$ )

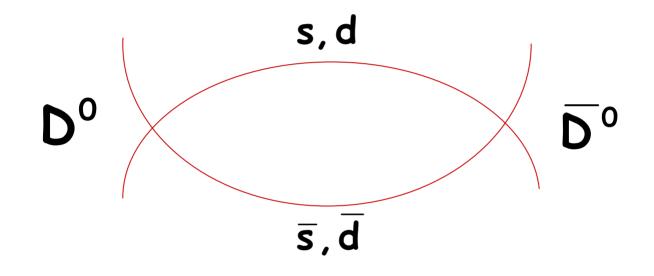
[See also S. Stone (Belle), talk at FPCP 2006]

#### Charm Mixing in the SM

#### **Quark Description (OPE\*)**



#### **D=6: Two local 4F operators**


#### **D=9: Fifteen local 6F operators**

#### Etc

\*[Georgi PL B297 (1992) 353]

#### **Dimension** Six

# Ignore b quark. Sum over $s\overline{s}$ , $d\overline{d}$ , $s\overline{d}$ + $d\overline{s}$ intermediate states.



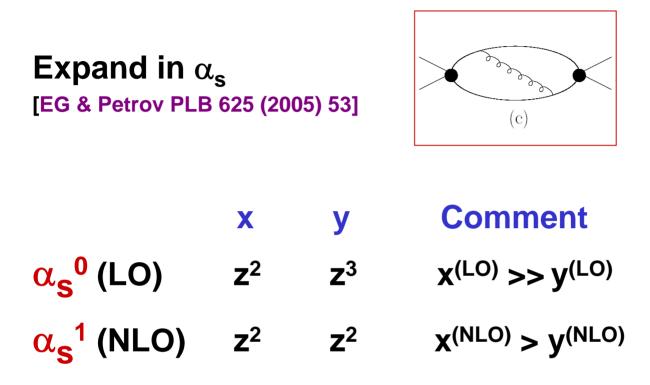
#### Expand in powers of

$$z = \frac{m_s^2}{m_c^2} \cong 0.006$$

|                                 | <b>Z</b> 0    | <b>Z</b> <sup>1</sup> | <b>Z</b> <sup>2</sup> |
|---------------------------------|---------------|-----------------------|-----------------------|
| SS                              | <u>1</u><br>2 |                       |                       |
| dd                              |               |                       |                       |
| $s\overline{d} + d\overline{s}$ |               |                       |                       |
| Total                           |               |                       |                       |

# $\Delta\Gamma$ at d=6 (m<sub>d</sub>=0):

|                                 | <b>Z</b> <sup>0</sup> | <b>Z</b> <sup>1</sup> | <b>Z</b> <sup>2</sup> |
|---------------------------------|-----------------------|-----------------------|-----------------------|
| SS                              | <u>1</u><br>2         |                       |                       |
| dd                              | <b>1</b><br>2         |                       |                       |
| $s\overline{d} + d\overline{s}$ |                       |                       |                       |


Total

|                                 | <b>Z</b> <sup>0</sup> | <b>Z</b> <sup>1</sup> | <b>Z</b> <sup>2</sup> |
|---------------------------------|-----------------------|-----------------------|-----------------------|
| SS                              | <u>1</u><br>2         |                       |                       |
| dd                              | <u>1</u><br>2         |                       |                       |
| $s\overline{d} + d\overline{s}$ | -1                    |                       |                       |
| Total                           | 0                     |                       |                       |

|                                 | <b>z</b> <sup>0</sup> | <b>z</b> <sup>1</sup> | <b>Z</b> <sup>2</sup> |
|---------------------------------|-----------------------|-----------------------|-----------------------|
| SS                              | <u>1</u><br>2         | -3z                   |                       |
| dd                              | <u>1</u><br>2         | 0                     |                       |
| $s\overline{d} + d\overline{s}$ | -1                    | 3z                    |                       |
| Total                           | 0                     | 0                     |                       |

|                                 | <b>Z</b> <sup>0</sup> | <b>Z</b> <sup>1</sup> | <b>Z</b> <sup>2</sup> |
|---------------------------------|-----------------------|-----------------------|-----------------------|
| รร                              | <u>1</u><br>2         | -3z                   | 3 <b>z</b> ²          |
| dd                              | <u>1</u><br>2         | 0                     | 0                     |
| $s\overline{d} + d\overline{s}$ | -1                    | 3z                    | -3z <sup>2</sup>      |
| Total                           | 0                     | 0                     | 0                     |

Allowing for QCD



Quark LO + NLO Result:  $x \cong y \approx 10^{-6}$ Current Bound y < 0.007 much larger! Higher terms in QCD,OPE?

#### $\Delta\Gamma_{\mathsf{D}}$ in the Standard Model

#### **Hadron Description**

$$\Delta\Gamma_{\rm D} = -2\Gamma_{12} = -\frac{1}{M_D} \operatorname{Im} \langle \overline{D}^0 | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{\Delta C=1}(x) \, \mathcal{H}_w^{\Delta C=1}(0) \Big\} | D^0 \rangle$$

Insert hadronic int. states:  $\sum_{n}$ 

$$\sum_{n} | n > < n |$$

Require matrix elements:  $< n | H_w | D^0 >$ 

#### **Three approaches:**

a] Using a model:

y ~ 10<sup>-3</sup> [BLMPS PRD 51 (1995) 3478]

#### $\Delta\Gamma_{\rm D}$ in the SM (cont)

b] Using data: Basic Idea [UMass PRD 33 (1985)178]

> Use experimental branching ratios Divide out phase space Take square root

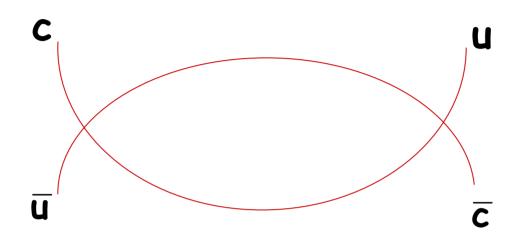
Recent Work [FGLNP PRD 69 (2004) 114021]

Complete survey: n = PP,VP,VV,3P,4P Conclude 0.01 > y > ? But analysis error-bar limited ...(?)

c] Nearby Resonances: [GP PL B427 (1998) 172] Can get enhancement if  $M_R \cong M_D$ Promising idea but data inadequate

#### Mixing and New Physics

#### **Standard Model (Historical)**


- $\mathbf{K}^{0}-\mathbf{\bar{K}}^{0} \rightarrow \mathbf{Charm} \ \mathbf{quark}$
- $\mathbf{B}_{\!d} \mathbf{B}_{\!d} \rightarrow \mathbf{Top} \ \mathbf{quark}$

#### **New Physics (Thus Far)**

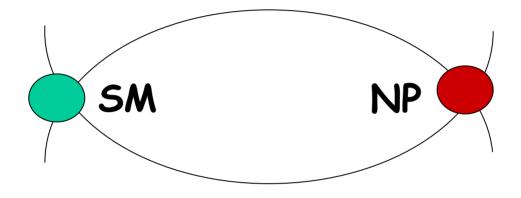
#### Nothing definite yet

Keep trying....

# **Propagating Particles**



#### $\Delta \mathbf{M}$


Both SM and NP particles propagate

#### ΔΓ

Only SM particles propagate

(Intermediate states are physical)

# $\Delta\Gamma_{\rm D}$ and New Physics\*



NP can affect  $\Delta\Gamma$ Via the  $\Delta C = \pm 1$  interaction vertex. Processes like  $c\overline{u} \rightarrow q_1\overline{q}_2$ 

#### \*EG, Pakvasa, Petrov [hep-ph/0610039]

## The Calculation



$$\mathbf{H}_{NP}^{\Delta C=-1} = \sum_{q,q'} \mathbf{D}_{qq'} \left[ \overline{\mathcal{C}}_1(\mu) \mathbf{Q}_1 + \overline{\mathcal{C}}_2(\mu) \mathbf{Q}_2 \right]$$

 $\mathbf{Q}_1 = \overline{u}_i \overline{\Gamma}_1 q'_j \ \overline{q}_j \overline{\Gamma}_2 c_i \quad \mathbf{Q}_2 = \overline{u}_i \overline{\Gamma}_1 q'_i \ \overline{q}_j \overline{\Gamma}_2 c_j$ 

#### OUTPUT

$$\mathbf{y}_{\mathrm{D}} = -\frac{4\sqrt{2}G_{F}}{M_{\mathrm{D}}\Gamma_{\mathrm{D}}} \sum_{q,q'} \mathbf{V}_{cq'}^{*} \mathbf{V}_{uq} \mathbf{D}_{qq'} (\mathbf{K}_{1}\delta_{ik}\delta_{j\ell} + \mathbf{K}_{2}\delta_{i\ell}\delta_{jk}) \sum_{\alpha=1}^{5} \mathbf{I}_{\alpha}(x,x') \langle \overline{D}^{0} | \mathbf{O}_{\alpha}^{ijk\ell} | D^{0} \rangle$$

# SM Recovered (LO)

$$D_{qq'} \rightarrow -\frac{G_F}{\sqrt{2}} V^*_{cq} V_{uq'} \qquad \overline{C}_i \rightarrow C_i$$

$$\overline{\Gamma}_{1,2} \rightarrow \gamma_{\mu} (1+\gamma_5)/2$$

$$y_{SM} = \frac{G_F^2 m_c^2 \lambda^2 z^3}{2\pi M_D \Gamma_D} \quad (K_2 - K_1) < Q_{eff} >$$
$$Q_{eff} = Q + 4 Q_S$$

#### LO Result tiny due mainly to $z^3$ and $\lambda^2$ .

# Some Results

| Model         | У <sub>D</sub>      | Comment          |
|---------------|---------------------|------------------|
|               | 6 10-6              | Squark Exch.     |
| RPV-SUSY      | -4 10-2             | Slepton Exch.    |
|               | -5 10-6             | 'Manifest'.      |
| Left-right    | -9 10 <sup>-5</sup> | 'Nonmanifest'.   |
| Multi-Higgs   | 2 10-10             | Charged Higgs    |
| Extra Quarks- | 10-8                | Not Little Higgs |

# $\Delta M_D$ and New Physics\*

Operator Basis

**Four-quark Operators** 

- D<sup>0</sup>-to-anti D<sup>0</sup> Matrix Elements
  Two B parameters
- RG Running

NP scale  $M \rightarrow Charm$  scale  $m_c$ 

Menu of NP Possibilities
 The Usual Suspects

\*EG, Hewett, Pakvasa, Petrov [in progress]

#### **Operator Basis**

#### Total of eight local operators:

$$Q_{1} = \vartheta_{L}\gamma^{\mu}c_{L} \cdot \vartheta_{L}\gamma_{\mu}c_{L}$$
$$Q_{2} = \vartheta_{L}\gamma^{\mu}c_{L} \cdot \vartheta_{R}\gamma_{\mu}c_{R}$$
$$Q_{3} = \vartheta_{L}c_{R} \cdot \vartheta_{R}c_{L}$$
$$Q_{4} = \vartheta_{R}c_{L} \cdot \vartheta_{R}c_{L}$$
$$Q_{5} = \vartheta_{R}\sigma^{\mu\nu}c_{L} \cdot \vartheta_{R}\sigma_{\mu\nu}c_{L}$$
$$Q_{6} = \vartheta_{R}\gamma^{\mu}c_{R} \cdot \vartheta_{R}\gamma_{\mu}c_{R}$$
$$Q_{7} = \vartheta_{L}c_{R} \cdot \vartheta_{L}c_{R}$$
$$Q_{8} = \vartheta_{L}\sigma^{\mu\nu}c_{R} \cdot \vartheta_{L}\sigma_{\mu\nu}c_{R}$$

#### **Matrix Elements**

#### Just two nonperturbative constants:

$$\begin{split} \langle Q_1 \rangle &= \frac{2}{3} f_D^2 M_D^2 B \\ \langle Q_2 \rangle &= -\frac{1}{2} f_D^2 M_D^2 B + \frac{1}{3} f_D^2 B_S' \\ \langle Q_3 \rangle &= \frac{1}{4} f_D^2 M_D^2 B - \frac{1}{2} f_D^2 B_S' \\ \langle Q_4 \rangle &= \frac{1}{4} f_D^2 B_S' \\ \langle Q_5 \rangle &= -f_D^2 B_S' \\ \langle Q_6 \rangle &= \langle Q_1 \rangle \\ \langle Q_7 \rangle &= \frac{5}{12} f_D^2 B_S' \\ \langle Q_8 \rangle &= \langle Q_5 \rangle \end{split}$$

# **RG** Running

**Ex:** 
$$\mathbf{Q}_{6} = \overline{\mathbf{u}}_{R} \mathbf{\gamma}^{\mu} \mathbf{c}_{R} \overline{\mathbf{u}}_{R} \mathbf{\gamma}_{\mu} \mathbf{c}_{R}$$

# Input K(M) Output K(m<sub>c</sub>)

Suppose NP scale M:  $M > m_t$ 

Let 
$$r(m_1, m_2) = a_s(m_1)/a_s(m_2)$$

Then  $K(m_c) = C[M, m_c]K(M)$ 

with

 $C[M, m_{c}] = r^{2/7}(M, m_{t})r^{6/23}(m_{t}, m_{b})r^{6/25}(m_{b}, m_{c})$ 

#### Menu of Possibilities

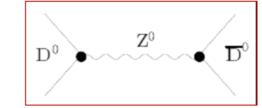
Extra gauge bosons

(LR models, etc)

Extra scalars

(Multi-Higgs models, etc)

Extra quarks


(Little Higgs, etc)

**Extra dimensions** 

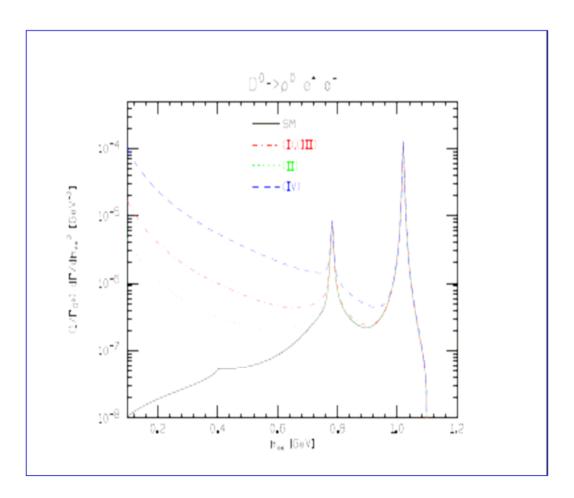
(Universal extra dimensions, etc)

Extra global symmetries (SUSY, etc)

#### Ex: Extra Quarks

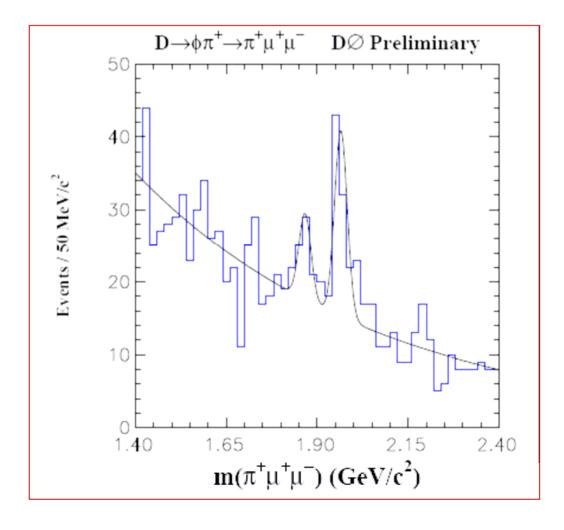


Tree diagram Z<sup>0</sup> pole Two flavor-changing vertices


Find 
$$\Delta M_D = \frac{G_F(U_{uc})^2}{2\sqrt{2}M_D} K_1 < Q_1 >$$

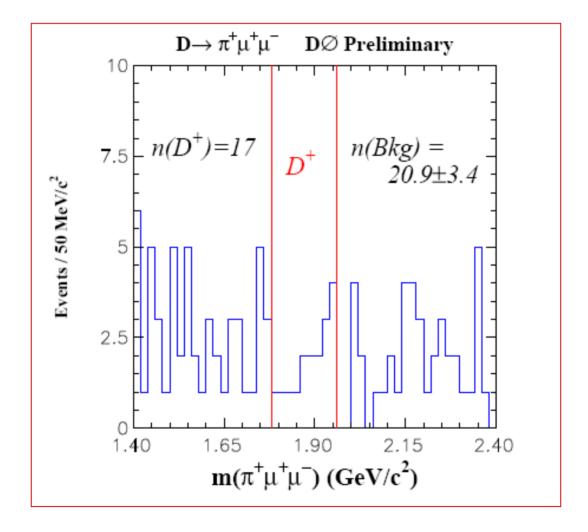
# Realizations: Vector-like SU(2)-singlet quarks

# Rare Charm Decays


Some are more interesting than others. Ex:  $D \rightarrow V\gamma$  dominated by SM effects. [BGHP PR D52 (1996) 6383]

Ex:  $D \rightarrow Ve^+e^-$  offers NP opportunities. [BGHP PR D66 (2002) 014009] Also see [FP PR D73 (2006) 054026]




#### Rare Charm Decays (cont)

## Experimental studies underway. Below is a recent D0 result involving D<sup>+</sup>,D<sub>s</sub><sup>+</sup> $\rightarrow \pi^+\phi \rightarrow \pi^+\mu^+\mu^-$



#### Rare Charm Decays (cont)

But no signal yet in the continuum. 'Best' upper bound a good beginning.



# **Concluding Remarks**

# • D<sup>0</sup> Mixing

#### **Experiment:**

A number of studies underway (Good!) But more sensitivity required. One ultimate goal: Probe 0.01 > y > 0.001

#### **Standard Model Theory:**

#### Quarks:

Triple expansion (D,  $\alpha_s$ , z) Calculation to date to NLO with D=6 Find x  $\cong$  y  $\cong$  10<sup>-6</sup> Higher terms in OPE (Difficult!)

#### Hadrons and $\Delta\Gamma$ :

One specific theory model gives  $y \approx 10^{-3}$ Phenomenology allows range 0.01 >y >?

# Concluding Remarks (cont)

#### **New Physics Theory:**

Analysis of  $\Delta\Gamma_{D}$  complete (New!) Updated analysis of  $\Delta M_{D}$  in progress.

#### Rare Decays

#### **Theory:**

SM and NP analyses already in the literature

#### **Experiment:**

Experiments underway, esp  $D \rightarrow M \ell^+ \ell^-$ 

More sensitivity needed.