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Motivation

e One of the most fruitful setup of flux compactification: type IIB
compactification on warped Calabi-Yau orientifold / F-theory.

e [ he progress of heterotic flux compactification, despite its phe-
nomenological interest, has been relatively slow since [Strominger 1986].

e Simpler examples: supersymmetric heterotic flux vacua dual to type
IIB ones, e.g., on K3 X TQ/ZQ [Dasgupta et.al., Becker et.al., etc.]

e Branes have been playing interesting roles: space-time filling branes
(D3, D7) [Gidding-Kachru-Polchinski, etc.], or domain walls (D5, NS5)
[Gukov-Vafa-Witten].

e In the heterotic side, at least for examples dual to type II, these
roles should played mostly by the heterotic 5-branes.



Plan

e Overview of the general structure of supersymmetric heterotic flux
backgrounds

e Investigate supersymmetric 5-branes in the above backgrounds —
generalized calibration conditions [Gutowski et.al., Gauntlett et.al.]

e Apply the results to the heterotic dual of the type IIB flux vacua
on K3 x T?/Z7o orientifold.

e Heterotic 5-branes wrapping ‘non-topological’ internal cycles play
the role dual to (1) space-filling D3-branes and (2) D5 domain walls
of type IIB flux vacua in an interesting and unified way.



Heterotic flux compactification
e Geometry: With N =1 SUSY, geometry in the string frame is a
direct product of 4d Minkowski space with an internal 6-manifold Mg
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without a warp factor.

e One can turn on internal 3-form flux:
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e Supersymmetry requires the internal space Mg to be a complex
manifold:
0=N,P= J,,;Iv[q,]nf — anv[q,]ﬂ?bo] ,

where J is a complex structure.



e Supersymmetry further relates the dilaton ®(y) and flux H(y) to
the gradient of J:

3
Hmnp = _3J7rg=]nr‘]p8v[q‘]rs] , Vm® = Zjnpv[mjnp] :
With nonzero flux, Mg cannot even be Kahler : dJ # 0.

e Using the above relations, one obtains an important equation
e 2Py H=d (e_QCDJ) = (vol)3412dBg  (generalized calibration)
This lets us identify

Be = (vol)z4g A (e‘QCDJ) (+ pure gauge)

as the magnetic 6-form potential, coupling minimally to five-branes.



Calibrated five-branes

e Consider a space-filling fivebrane in the above background: it should
wrap a 2-cycle >5 in Meg.

e [ he worldvolume energy density consists of volume plus Coulomb
energy coming from the dual 6-form potential

E = /22 (6_2¢(’00l)5_|_1 - 36) ~ /22 e 2P ((vol)z2 — J> >0 .

Since (vol)s, > x2J holds locally, a configuration with £ =0 is a
classical solution of the equation of motion.

e The ‘BPS’ condition (vol)s, = *2J requires > to be a holomorphic
embedding : generalized calibrated cycles.

e [ he 5-branes wrapping these cycles are indeed supersymmetric con-
figurations [Gutowski-Papadopoulos-Townsend].



Heterotic dual of type IIB flux vacua on K3 x T2/Z»

e As a concrete example, let us take Mg to be a T2 fibration over a
K3 surface: dual to type IIB flux backgrounds.

e Basic ingredients of dual type IIB configurations are: (1) Internal
geometry: direct product K3 x T2 (overall warp factor). (2) Internal
RR and NSNS 3-form fluxes. (3) Space-filling D3 branes. (4) D7-
branes and O7-planes wrapping K3 and localized in T2 (— T2/Z5).

e [-dualizing along two directions of torus, we expect type I vacua
compactified on T2 fibration over K3 : NS 3-form flux — metric.

e A further S-duality would map the above to (SO(32)-)heterotic flux
vacua: RR 3-form — heterotic 3-form flux.



e The class of internal geometry that we will consider has U(1)2
isometry [Fu-Yau, Becker et.al.]:

d862 = ¢2(®—%0) R32 dsK§ + €F2 dz + af?

zwz—|—27r\/;rvz—|—27r\/;i.

a1 = Re(a), ar» = Im(a) are 1-forms in K3, providing nontrivial
fibrations: wip = dajp € 27Vo/H?(K3,Z). They are ‘T-duals’ of
type IIB NSNS internal flux along K3 x T2/Z>.

e Due to the nontrivial fibration, T2 is not a topological cycle.

e Analogue: S3/7Z, is a Hopf fibration of St over S2. ©1(S3/Z) = Zy,
which is not extensive. A loop winding Sl k times is contractible .

8



e o/ corrections are crucial for consistent flux compactification (a way
to avoid the Malcacena-Nunez no-go theorem)

/ 1 /
L=Y"9c2®(Rw) - = H? 4 4(VD)2 + 2 (trFy n FMN — triy, R MN)
2K1% 12 3
/

dH = Oéz (trR’ AR —trFEANF — 167?255_1”4@“6)

e For instance, integrating J AdH over Mg, one obtains

. - p1(F)
N ,/ o |2 CUQZ/ trRia A Rpa—trEAF =24
5+ K3| 117+ |@oo| g TRK3 A B3 + 5

where 2nvVa' &1 5 = dag o € H?(K3,Z). 1t is the heterotic dual of D3

tadpole cancellation condition for type IIB flux vacua:
1 x(K3)?

(472a!)2 /K3><T2 3OS 24

Nps3 + 24



Five-branes wrapping the T2 fiber

e [ he space-filling D3-branes in type IIB are supposed to map to
heterotic 5-branes wrapping non-topological T2 fiber and localized in
K3 base.

e Recalling the structure of generalized calibration, we recognize that
Coulomb force B6 holds the 5-brane to be stable against small fluc-
tuations, keeping it not to contract.

e For a 5-brane wrapping T2 fiber,

e 2® ((vol)g - J) = 2® ((vol)g - %dz A dZ)

An obvious holomorphic embedding saturates the energy bound.

e Since the above configuration is supersymmetric, it should be stable
and is U-dual to type IIB D3-branes.
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e However, one can imagine a process of contracting this super-
symmetric 5-brane so that it would shrink and disappear. This un-
wrapping process requires an infinite energy cost to cross an energy
pbarrier.

e Furthermore, the tadpole cancellation condition should hold after
this process:

- _ p1(F)
N / W - W 2=24 i
5+ K3| 112+ |@9o + 5

A process ANg<0 should be accompanied with A [, |@]° > 0: ends
up with a different vacuum.

e Imagining that this contraction proceeds as one moves along a
spatial direction of R3tL, it can be identified as a domain wall.
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More on heterotic/type IIB domain walls

e Consider a D5 domain wall wrapping a 3-cycle X3 = S1 x ¥ C
T2 x K3, where X3 contains N3 NSNS flux (72 = S1 x §1).

e N3 space-filling D3-branes should end on D5. Suppose n D3's:
S = — BANC4—n Cy .
w2z DE 4 3 =4
The gauge invariance under dCy = dA3

I
5SWZ ~ ( 23 dB — ’I’L) /R2+1 /\3 =0

requires n = N3.

e One can also notice this fact from the D3 tadpole condition:

1
0= ANps + 33 /H3 A(AF3) = —n 4+ N3 .

(
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e [ his structure is same as the unwinding process of T2 wrapping
5-branes: tadpole cancellation condition requires

0= AN: 4+ A A N
5+ K3|1|-|-|2|

e For simplicity, consider a simple toy example where Sl T2 s fibred
over Yo(~ S2) C K3 with [w1] ~ k[Z5]: one may regard X3 as S3/Z;
and S1 ~ Hopf fiber.

e 5-brane wrapping S1 k times, and S ¢ T2 (trivial over X5) once.

e As we try to contract kS1(c T2), the locus of the brane in S2(C K3)
cannot maintain to be a point, due to the nontrivial fibration: it
becomes a closed loop in ¥ ~ S2.
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e As kS! shrinks to a point, the closed loop completely sweeps the
S2 base once and shrinks back to a point: a domain wall ‘wrapping’
2 5 X Slc Mg, beyond which k space-filling 5-branes disappear.

e k (~number of ‘twists’ of the S! fiber) is T-dual to the NSNS
3-form flux piercing ¥» x S1.

.. Combined system of domain wall and k space-filling branes (dual to
D5+ k D3) would be described as a single smooth heterotic 5-brane.

e It will be interesting to study these domain wall configurations more
quantitatively (and compare it with the type IIB ones).
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Conclusion

e In the heterotic flux vacua with N = 1 SUSY, space-filling super-
symmetric 5-branes are described by a generalized calibration condi-
tion.

e For the heterotic dual of K3xT?/Z> vacua, we found space-filling 5-
branes whose stability is guaranteed not by topology, but dynamically
by the flux.

e \Winding number of 5-brane on T2 is non-extensive, and there is a
process of unwinding it by crossing an infinite energy barrier: dual to
the space-filling D3 branes ending on a D5 domain wall.

e [ he patterns of heterotic 5-brane domain walls are in good agree-
ment with the type IIB ones. It will be worthwhile to study the
heterotic version in more detail.
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