# First Observation of WZ Production and Search for ZZ at CDF

### **Mark Neubauer**

University of California, San Diego for the CDF Collaboration

# 🗱 Fermilab 🚪



UCSD

## **Physics** Motivation: Dibosons

### Probe non-Albelian nature of $SU(2)_L \otimes U(1)_Y$

- $\rightarrow$  Gauge boson self-interactions
- Diboson production sensitive to new physics (NP) in trilinear gauge couplings (TGC)

Tevatron (pp) complementary to LEP (e<sup>+</sup>e<sup>-</sup>)

- Sensitive to different TGC combinations
- Tevatron explores higher  $\hat{s}$  than LEP

### Experimentalist perspective:

- Dibosons are an important background for many high  $p_{_T}$  analyses (H $\rightarrow$ WW\*, ZH/WH, SUSY, tt, ...)
- Demonstrate sensitvity to NP in multilepton final states





Wγ: Talk by A. Nagano Zγ: Talk by J. Deng

Absent in SM

Higgs / SUSY / ??? may be hiding somewhere in our diboson samples...

## WZ/ZZ Production in the Standard Model





#### Mark Neubauer

### **The Fermilab Tevatron**

### World's highest energy particle collider until turn-on of LHC @ CERN





DPF 2006 / Honolulu, Hawaii

### The CDF II Detector



#### Mark Neubauer

# Lepton Selection

In final states with 3 or more leptons (e.g. WZ and ZZ), lepton acceptance is key

- Try to use every track and electromagnetic shower found
- Exploit as much of the available information as possible for each candidate

Electrons

Central calorimeter fiducial

Forward calorimeter fiducial

- With or w/o Si-based track

#### Muons

- CMU+CMP (CMUP) stubs
- CMX stub
- Minimum Ionizing Particle (MIP)



- Fill in regions not fiducial to a calorimeter
- Considered flavor neutral (e or  $\mu$ )



All leptons required to be calorimeter isolated: minimal transverse energy around lepton

#### Mark Neubauer

# WZ Selection



### **Background estimation:**

Expect backgrounds from  $Z\gamma$ , ZZ, Z+jets, tt

- Zγ: U. Baur's ME generator + Pythia + GEANT
- ZZ, tt: Pythia + GEANT
- Z+jets from data
  - 1) Measure  $P_{fake}$  (jet-like object  $\rightarrow$  lepton) in inclusive jet data after correction for leptonic W,Z decays using MC
  - 2) Scale dilepton + jet-like object(s) events in data by P<sub>fake</sub>

### $W^{\pm}Z^{0} \rightarrow \ell^{\pm}\ell^{-}\ell^{+}\nu$ Selection:

- Triggers: Central  $e^{\pm}$ , Central  $\mu^{\pm}$  (CMUP,CMX), Forward  $e^{\pm}$  + large  $E_{\tau}$
- 3 reconstructed leptons with  $E_{T} > 20,10,10$  GeV
- Z region: ≥1 opp-sign, same flavor lepton pair in (76, 106) •
- ZZ Veto: Invariant mass of non-Z ("W") lepton and an additional high  $p_{T}$  track (> 8 GeV) not in (76,106)
- $\Delta \phi(E_{T}, \text{ nearest lepton or jet}) > 9^{\circ}$
- $\not{\mathbb{E}}_{\tau} > 25 \text{ GeV}$

#### Mark Neubauer

# WZ Control / Signal Regions

 $W^{\pm}Z^{0} \rightarrow \ell^{\pm}\ell^{+}\ell^{-} + E_{T}$  Signal Region

- Z region (76 <  $M_{_{PP}}$  < 106)
- $E_{T} > 25 \text{ GeV}$

### **Dilepton (Drell-Yan)** Region:

Tests efficiency and acceptance calculations

- Z region (76 <  $M_{_{PP}}$  < 106)
- Invert  $E_{T}$  cut

### **Trilepton** Control regions

Tests background modeling

Low MET Region: • Invert  $E_{T}$  cut

 $Z\gamma$  ISR, Z+jet fakes

- Z Veto Region:
  - Invert Z mass cut
  - Invert  $\not{E}_{T}$  cut

#### Mark Neubauer



# **Region Results**



|        | Source           | Expectation $\pm$ Stat $\pm$ Syst $\pm$ Lumi |
|--------|------------------|----------------------------------------------|
|        | Z+jets           | $1.22 \pm 0.27 \pm 0.28 \pm$ -               |
|        | ZZ               | $0.89 \pm 0.01 \pm 0.09 \pm 0.05$            |
| Signal | $Z\gamma$        | $0.48 \pm 0.06 \pm 0.15 \pm 0.03$            |
| Region | $t\bar{t}$       | $0.12 \pm 0.01 \pm 0.01 \pm 0.01$            |
|        | WZ               | $9.79 \pm 0.03 \pm 0.31 \pm 0.59$            |
|        | Total Background | $2.70 \pm 0.28 \pm 0.33 \pm 0.09$            |
|        | Total Expected   | $12.50 \pm 0.28 \pm 0.46 \pm 0.68$           |

DPF 2006 / Honolulu, Hawaii

## Low MET Region: Kinematics



DPF 2006 / Honolulu, Hawaii

## Z Veto Region Kinematics



DPF 2006 / Honolulu, Hawaii

## WZ Results

| Source           | Expectation $\pm$ Stat $\pm$ Syst $\pm$ Lum |  |  |
|------------------|---------------------------------------------|--|--|
| Z+jets           | $1.22 \pm 0.27 \pm 0.28 \pm$ -              |  |  |
| ZZ               | $0.89 \pm 0.01 \pm 0.09 \pm 0.05$           |  |  |
| $Z\gamma$        | $0.48 \pm 0.06 \pm 0.15 \pm 0.03$           |  |  |
| $t\bar{t}$       | $0.12 \pm 0.01 \pm 0.01 \pm 0.01$           |  |  |
| WZ               | $9.79 \pm 0.03 \pm 0.31 \pm 0.59$           |  |  |
| Total Background | $2.70 \pm 0.28 \pm 0.33 \pm 0.09$           |  |  |
| Total Expected   | $12.50 \pm 0.28 \pm 0.46 \pm 0.68$          |  |  |
| Observed         | 16                                          |  |  |

Signal Region ( $E_{T} > 25$  GeV) 1-bin counting:

• Prob(background only) <  $1.5 \times 10^{-7}$  (5.1  $\sigma$ )

Two bins in  $E_{T}$  (chosen a priori using independent samples

- $N_{obs} (25 < E_T < 45 \text{ GeV}) = 9$
- $N_{obs}(45 < E_T < \infty \text{ GeV}) = 7$

Prob(background only) <  $2 \times 10^{-9}$  (5.9  $\sigma$ )

- ⇒ First observation of WZ production!
- We also note that our 2-bin result is ordinary for the sum of Standard Model WZ and background.
  - 49% of pseudo-experiments have a joint 2-bin probability smaller than our data

#### Mark Neubauer



### WZ Results



DPF 2006 / Honolulu, Hawaii

### WZ Signal Region Kinematics





Mark Neubauer

# WZ Signal Region Kinematics



DPF 2006 / Honolulu, Hawaii

# $W^{\pm}Z^{0} \rightarrow e^{\pm}\overline{v}_{e}^{+}e^{-}Candidate$



Forward *e* 24.6 -2.1 -1.1





Forward  $\mu$  40.4 1.6 -0.6

# $ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$ Search Analysis

### Background estimation:

Expect backgrounds from Z+jets,  $Z\gamma\gamma$ 

- Zyy: Madgraph + Pythia + GEANT
- Z+jets from data

### $Z^{\scriptscriptstyle 0}Z^{\scriptscriptstyle 0} \to \ell^+\ell^-\ell^+\ell^- \text{ Selection:}$

- Triggers: Central e<sup>±</sup>, Central μ<sup>±</sup> (CMUP,CMX)
- 4 leptons (e, $\mu$ ) with  $E_{T} > 20,10,10,10$  GeV
- Z mass regions: ≥1 opp-sign, same-flavor lepton pair in (76, 106) ≥1 additional opposite-sign, same-flavor pair in (40, 140)

| Source           | Expectation $\pm$ Stat $\pm$ Syst $\pm$ Lumi |
|------------------|----------------------------------------------|
| Z+jets           | $0.007 \pm 0.007 \pm 0.004 \pm$ -            |
| $Z\gamma\gamma$  | $0.002 \pm 0.001 \pm 0.000 \pm 0.000$        |
| ZZ               | $1.884 \pm 0.015 \pm 0.061 \pm 0.113$        |
| Total Background | $0.009 \pm 0.007 \pm 0.004 \pm 0.000$        |
| Total Expected   | $1.893 \pm 0.017 \pm 0.062 \pm 0.113$        |
| Observed         | 1                                            |

We can exclude the background-only hypothesis at  $2.6\ \sigma$ 

We determine:

$$\sigma(ZZ) < 3.8 \text{ pb} (95\% \text{ C.L.})$$

consistent with NLO  $\sigma(ZZ) = 1.4 \pm 0.1 \text{ pb}$ 

#### DPF 2006 / Honolulu, Hawaii

# $Z^0Z^0 \rightarrow \mu^+\mu^-\mu^+\mu^-$ Candidate



# Summary



 $\sigma$ (ZZ)<3.8 pb (95% C.L.)

Mark Neubauer

# **Extras**

Mark Neubauer





### Using $\int L dt = 0.8 \text{ fb}^{-1}$

 $W^{\pm}Z^{0} \rightarrow \ell^{\pm}\ell^{+}\ell^{-}\nu$  selection:

- 3 leptons (e,µ) with Pt > 20,10,10 GeV/c
- $Z_{\ell}^{0}$  region: 76 < M( $\ell^{+}\ell^{-}$ ) < 106 GeV/ $c^{2}$
- $E_{\rm T} > 25 \, {\rm GeV}$

Observe 2 events (eee) with an expected background of  $0.9\pm0.2$  and signal of  $3.7\pm0.3$ 

**σ**(WZ) < 6.34 pb (95% C.L.)

#### Signal:

WZ:  $3.72 \pm 0.02$  (stat.)  $\pm 0.15$  (syst.)

### Backgrounds:

| ZZ:     | $0.50 \pm 0.01$ (stat.) $\pm 0.05$ (syst.)         |
|---------|----------------------------------------------------|
| Ζγ:     | $0.03 \pm 0.01$ (stat.) $\pm 0.01$ (syst.)         |
| tt:     | $0.05 \pm 0.01$ (stat.) $\pm 0.01$ (syst.)         |
| Z+jets: | $0.34 \pm 0.07$ (stat.) $^{+0.15}_{-0.09}$ (syst.) |
| Total:  | $0.92 \pm 0.07$ (stat.) $^{+0.16}_{-0.10}$ (syst.) |



### WZ Analysis Systematics

| Variation            | ZZ           | $Z\gamma$      | $t ar{t}$      | WZ          |
|----------------------|--------------|----------------|----------------|-------------|
| Expected Yield       | 0.9          | 0.5            | 0.1            | 9.8         |
| Lepton Id Efficiency | $\pm 2.0\%$  | $\pm 1.9\%$    | $\pm 1.2\%$    | $\pm 1.9\%$ |
| Trigger Efficiency   | $\pm 0.6\%$  | $\pm 0.9\%$    | $\pm 0.4\%$    | $\pm 0.6\%$ |
|                      | $\pm 1.0\%$  | $\pm~25.0\%$   | $\pm 1.0\%$    | $\pm 1.0\%$ |
| Energy Scale         | $\pm 1.0\%$  | $\pm \ 1.0\%$  | -              | $\pm 1.0\%$ |
| PDF Uncertainty      | $\pm 2.0\%$  | $\pm~2.0\%$    | $\pm~2.0\%$    | $\pm 2.0\%$ |
| Cross-Section        | $\pm 10.0\%$ | $\pm~20.0\%^*$ | $\pm \ 10.0\%$ | _           |
| Total                | $\pm 10.5\%$ | $\pm$ 32.2%    | $\pm \ 10.3\%$ | $\pm 3.2\%$ |

\* includes conversion and material description systematics.

### **ZZ** Analysis Systematics

| Source                           | Uncertainty |
|----------------------------------|-------------|
| Expected Yield                   | 1.88        |
| Lepton Id Efficiency             | $\pm 2.2\%$ |
| Trigger Efficiency               | $\pm 0.8\%$ |
| $ \not\!\!E_T \text{ Modeling} $ | $\pm 1.0\%$ |
| Energy Scale                     | $\pm 1.0\%$ |
| PDF Uncertainty                  | $\pm 2.0\%$ |
| Total                            | $\pm 3.4\%$ |

Mark Neubauer

### Control Regions: Z Pt

### Low MET

Z Veto





DPF 2006 / Honolulu, Hawaii

### **Control Regions: Flavors**

### Low MET

Z Veto





#### DPF 2006 / Honolulu, Hawaii

## MlepTrk vetoed event



DPF 2006 / Honolulu, Hawaii

# WZ Control / Signal Regions

