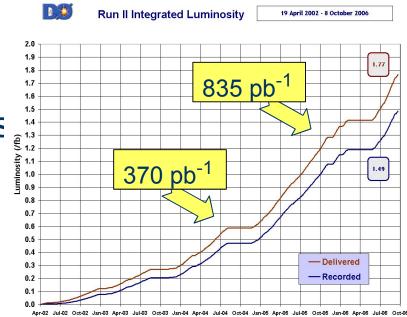
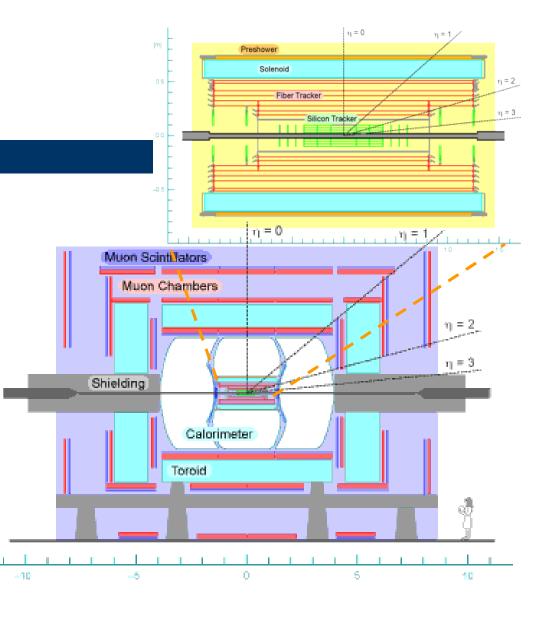
Measurement of the Mass of the Top Quark in Dilepton Channels at DØ

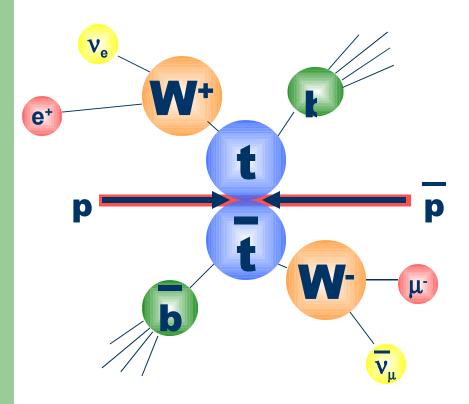

Jeff Temple University of Arizona for the DØ collaboration DPF 2006


Overview

- tt→dilepton decays
- Event selection
- Reconstructing top mass
 - Matrix weighting
 - Neutrino weighting

- Combined dilepton result for 370 pb⁻¹ sample
- Result in eµ channel for 835 pb⁻¹ sample


Fermilab Accelerators


- 5 accelerators
- Collide protons and antiprotons at √s=1.96 TeV
- Collisions at CDF, DØ

DØ Detector

- Silicon, Fiber Trackers within 2 T solenoid
- LAr calorimeter
- 3 layers of muon scintillators and wire chambers -
 - Toroid between
 1st and 2nd layers

Dilepton Decay Channel

- 2 high- p_T jets
- 2 high-p_T leptons
- Significant missing transverse energy (MET) from neutrinos

Dilepton Channel Pros and Cons

Pros:

- Small background yields
 - Z→ee, μμ
 - Ζ→ ττ
 - WW, WZ
 - Instrumental Fakes
- Few Jet Combinations

Cons:

• Small branching fraction

 Neutrinos not measured directly!

Dilepton Event Selection

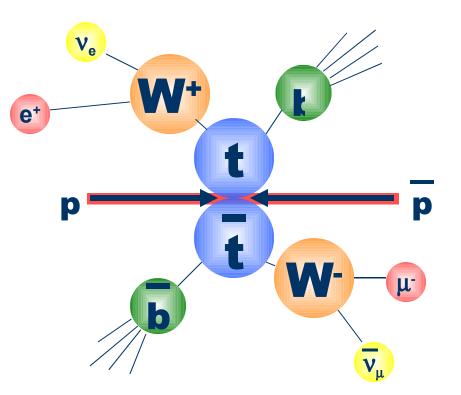
ee channel Reject 80 GeV<M_{ee}<100 GeV • 2 leptons if M_{ee}<80 GeV, MET>40 GeV if M_{ee}>100 GeV, MET>35 GeV – p_⊤>15 GeV Sphericity > 0.15 2 jets μμ channel – p_T>20 GeV Z fitter • MET > 35 GeV Channel-specific cuts increase MET requirement ("b-tagging": require one based on MET- μ angle jet to be identified with a *e*μ channel secondary vertex) • MET > 25 GeV Energy of jets + leading lepton >140 GeV Cut on electron shower shape

Additional Selection: Lepton+Track

- Select one lepton + one isolated central track
- Increases dilepton acceptance
- Veto events satisfying ee, eμ, μμ selection

Lepton + Track selection

- 1 lepton
 - p_T > 15 GeV
- 1 isolated track
 - p_T> 15 GeV
- 2 jets
 - p_T>20 GeV
 - at least one b-tagged jet
- MET> 15-35 GeV

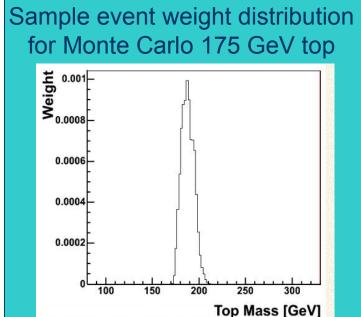

Dilepton Events in Data

- ~370 pb⁻¹ of data
- Slightly different selection criteria for matrix weighting, neutrino weighting

_	tt	WW	Z	Fake	Total	Data
Matrix Weight						
Dilepton: No b-tag	7.2	1.1	2.6	2.2	13.1+2.8-2.1	12
Dilepton: b-tag	9.9	0.05	0.12	0.9	11.0+/-0.7	14
Neutrino Weight						
Dilepton	15.8	1.1	2.4	0.5	19.6+/-0.6	21
Lepton + Track	6.3	0.01	1.7	0.4	8.4+/-0.3	9

Reconstructing Top Mass

- 18 independent kinematic variables
- 12 measured directly (jets, charged leptons)
- Also measure MET_x, MET_v
- 2 constraints from m_{W+}, m_{W-}
- 1 constraint from m_t=m_t



Insufficient constraints to determine m_t!

Assigning Event Weight

• Assume m_t

- Assign weight W(m_t) to mass assumption based on agreement with observables
 Sample event weight dist
 - matrix weighting
 - neutrino weighting
- Repeat for many values of m_t
- Use weights to determine mass

Matrix Element Weighting (MWT)

$$W(m_t) = f(x) f(\overline{x}) P(E_{\ell}^{CM} | m_t) P(E_{\overline{\ell}}^{CM} | m_t)$$

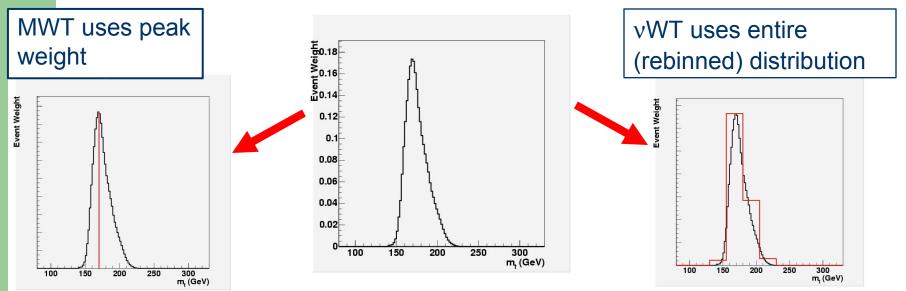
- f(x) = parton distribution function
- P(E|m_t)=probability that lepton has energy E in rest frame of top quark:

$$P(E|m_t) = 4 m_t E \frac{m_t^2 - m_b^2 - 2 m_t E}{(m_t^2 - m_b^2)^2 + m_W^2 (m_t^2 + m_b^2) - 2 m_W^4}$$

R. H. Dalitz and G.R. Goldstein, Phys. Rev. D 45, 1531 (1992)

Weight based on consistency of observed lepton energy with m_t hypothesis

Neutrino Weighting (vWT)

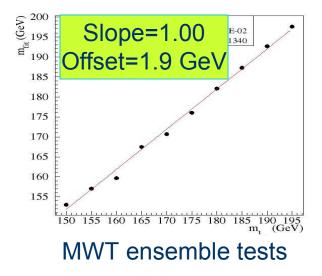

- Ignore MET_x, MET_y
- Assume $m_{t_i} \eta_{v_i} \eta_{v_i}^-$
- Repeat for many rapidity assumptions

$$W(m_{t}) = \sum_{\eta_{v}, \eta_{\bar{v}}} \sum_{i=x, y} \exp\left(-(MET_{i} - p_{v_{i}} - p_{\bar{v}_{i}})^{2} \mathbf{i} 2 \sigma_{i}^{2}\right)$$

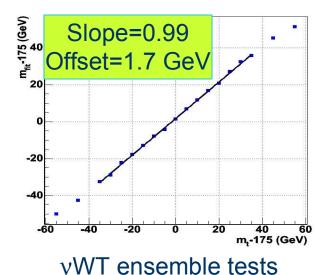
Weight based on agreement between assumed total neutrino momentum and observed MET

Generating Event Templates

Extract mass information from event weights

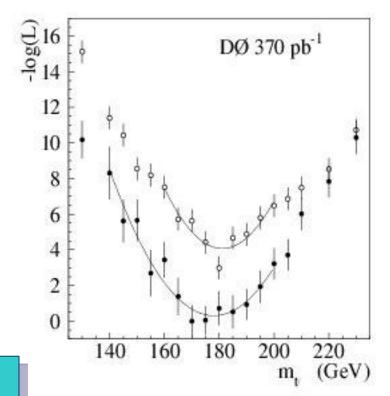

- Collection of event weight info is a *template*
- Form templates for signal, backgrounds
 - Monte Carlo for different values of m_t
 - Monte Carlo/Data for backgrounds

Likelihood Fit


Determine m_t with maximum likelihood fit

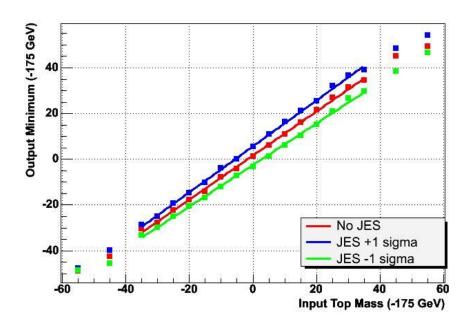
Use ensemble tests to calibrate fit minimum

15



Results from 370 pb⁻¹ Data Set

- open circles: vWT
 - dilepton
 - lepton + track
- closed circles: MWT
 - dilepton
 - b-tagged
 - no b-tagged
- Combined measurement:


16

$$m_t = 178.1 \pm 6.7(stat.) \text{ GeV}$$

Estimating Systematics

- Largest uncertainty: Jet Energy Scale (JES)
- Create ensembles with jet energies varied by their uncertainties, and compare to original templates
- Similar approach for other uncertainties

Combined JES uncertainty: 4.3 GeV

Systematic Uncertainties

Source	Uncertainty (GeV)
Jet Energy Scale	4.3
Gluon Radiation	1.5
Background Statistics	0.9
Signal MC Statistics	0.9
PDFs	0.8
Jet Resolution	0.3
Heavy Flavor	0.3
Muon Resolution	0.2
Total	4.8

Combined Result for 370 pb⁻¹

• m_t=178.1±8.3 GeV

- Submitted to PRL
- hep-ex/0609056
- Consistent with previous measurements
- Significant improvement on Run I dilepton uncertainty

(* = preliminary)CDF-I dilepton 167.4 ± 11.4 D0-I dilepton 168.4 ± 12.8 CDF-II dilepton* 164.5 ± 5.5 D0-II dilepton 178.1 ± 8.3 176.1 ± 7.3 CDF-I lepton+jets 180.1 ± 5.3 D0-I lepton+jets 170.9 ± 2.5 CDF-II lepton+jets* 170.3 ± 4.5 D0-II lepton+jets 186.0 ± 11.5 **CDF-I alljets** CDF-II alljets* 174.0 ± 5.2 CDF-II b decay length* 183.9 ± 15.8 **Tevatron Run I/II** 171.4 ± 2.1 180 200 220 240 120 140 160 260 80 100

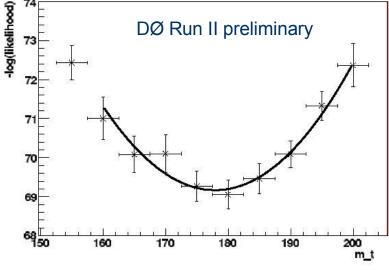
Measurements of the Top Quark Mass

Measured Top Mass (GeV)

Event Selection for 835 pb⁻¹

 MWT, vWT analyses for eµ channel only

eµ event selection

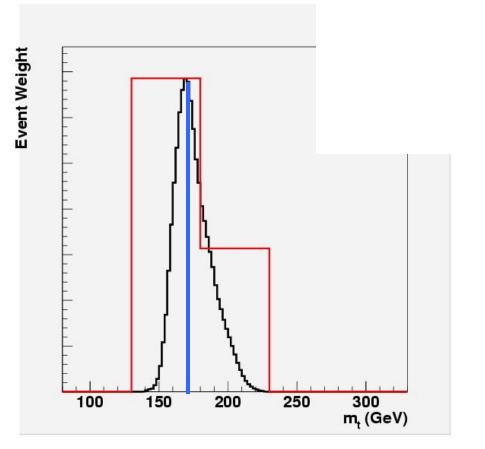

1 muon, $p_T > 15$ GeV 1 electron, $p_T > 15$ GeV 2 jets, $p_T > 15$ GeV Energy of jets + leading lepton > 120 GeV **Expected Yields**

 $t \bar{t} \text{ signal: } 17.5 \pm 2.6$ WW : $1.0^{+1.5}_{-0.3}$ $Z \rightarrow \tau \tau$: $2.2^{+1.5}_{-1.3}$ fakes : 0.4 ± 0.2 total : $21.1^{+3.4}_{-2.9}$

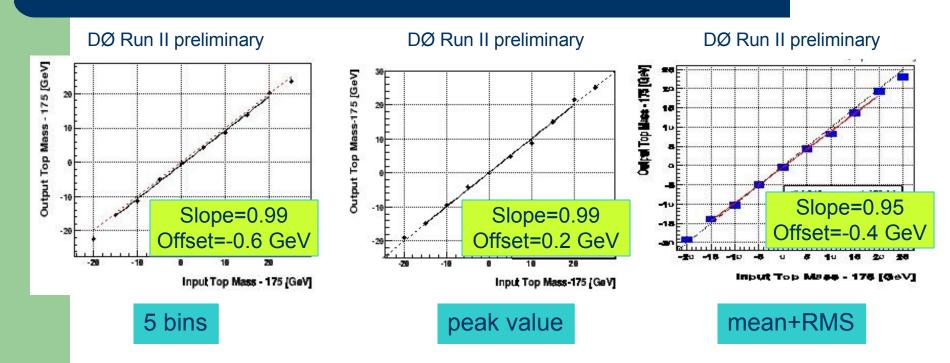
OBSERVED: 28

MWT Measurement

-log (likelihood)

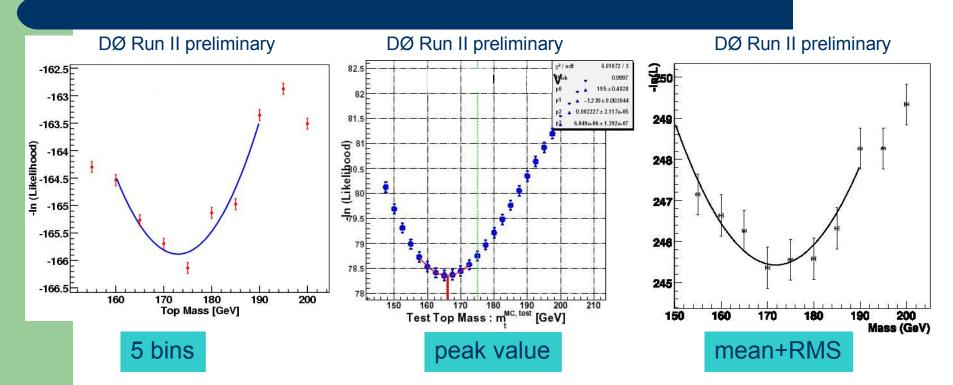


m_t (GeV)


 $m_t = 177.7 \pm 8.8(stat.)^{+3.7}_{-4.5}(syst.)$ GeV

Revised vWT Event Weights

- 3 approaches
 - Coarse binning
 - same as previous
 vWT analysis
 - 6 bins, not 10
 - peak value
 - à la MWT
 - Modified fitting procedure
 - Mean + RMS



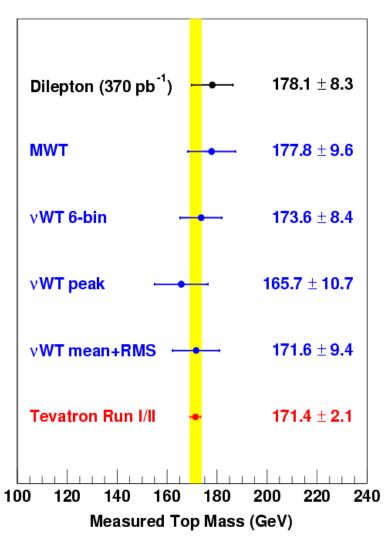
vWT Ensemble Tests

 Each method shows good agreement between input, output top mass

vWT Measurements

- $m_{t} = 173.6 \pm 6.7 \text{ (stat.)}^{+5.1} \text{ (syst.) GeV}$ 5 bins:
- peak:

24


 $m_{t} = 165.7 \pm 9.7 \text{ (stat.)}^{+4.4} \text{ (syst.) GeV}$ Mean+RMS: m, = 171.6 ± 7.9 (stat.) ^{+5.1}_{-4.0} (syst.) GeV

Results for 835 pb⁻¹

- New results consistent with one another and world average top mass
- Uncertainties in eµ channel comparable to combined uncertainty for 370 pb⁻¹

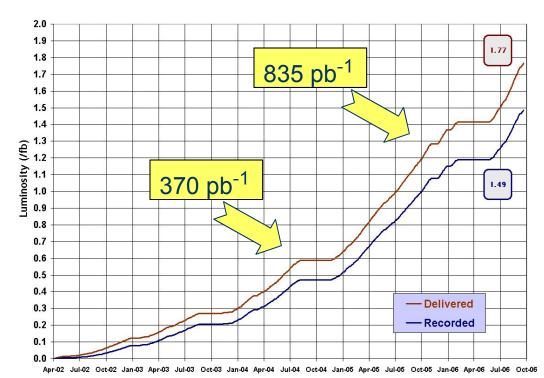
Measurements of the Top Quark Mass

in Dilepton Channels (D0 Run II preliminary)

Conclusions

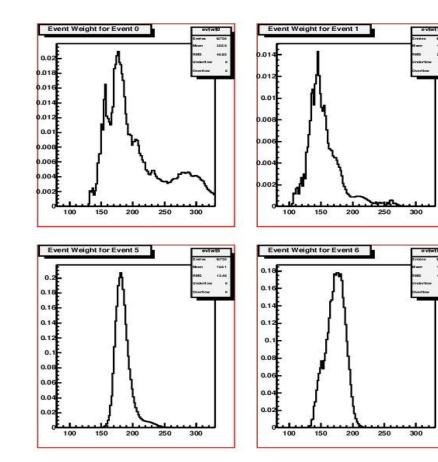
- Combined 370 pb⁻¹ Run II dilepton measurement improves upon Run I result
- 835 pb⁻¹ result in eµ channel provides further reduction in uncertainty
 - ee, $\mu\mu$ analyses proceeding
 - vWT converging on preferred mass extraction method
- Approaching point where measurement is limited by systematics!

Backup Slides

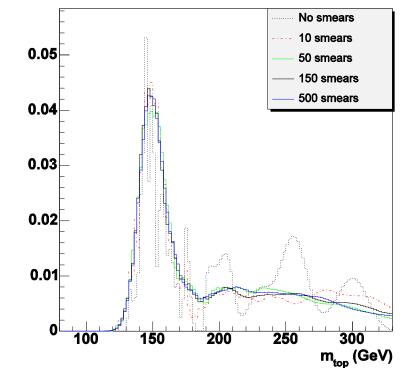

- Run II luminosity
- Sample event weights
- Individual mass measurements
- Pull Distributions

DØ Run II Integrated Luminosity

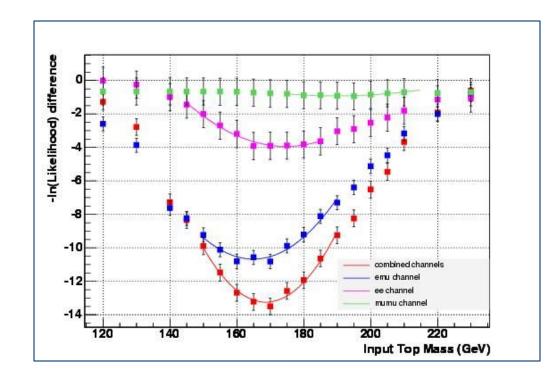
- B
- Run II Integrated Luminosity


19 April 2002 - 8 October 2006

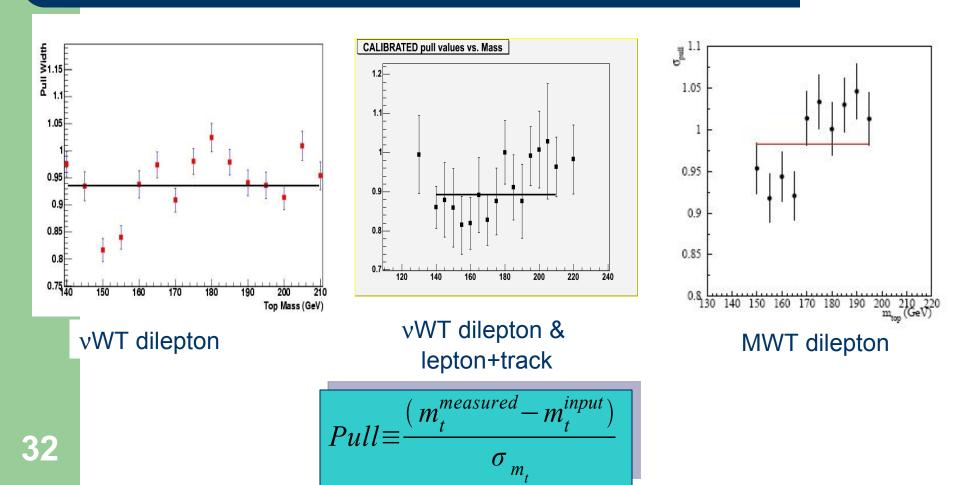
- Run II started in April, 2002
- Data collection efficiency > 85%
- 370 pb⁻¹ collected by fall 2004
- 835 pb⁻¹ collected by fall 2005
- (compare to 110 pb⁻¹ for Run I)

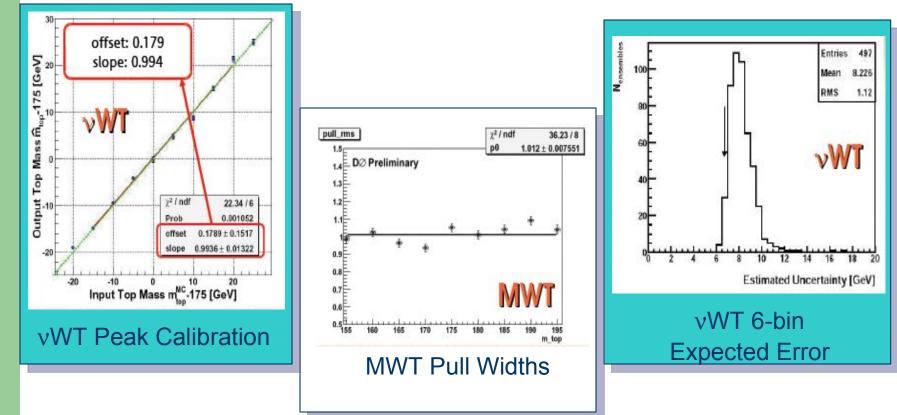

Sample Event Weights – vWT 370 pb⁻¹

- Correct assumption of $m_{t,}$ $\eta_{v,}\eta_v^-$ leads to non-zero weight
- Incorrect assumptions can also produce valid solutions!



Detector Smearing – vWT 370 pb⁻¹


- Object momenta not measured perfectly
- Repeat weight calculations, smearing over detector resolutions
- ~150 smears
 "stabilizes" weight distribution


Individual Channel Results – vWT 370 pb⁻¹

Pull Distributions – 370 pb⁻¹

Ensemble Checks – 835 pb⁻¹

