Search for

single top quarks via flavor-changing neutral currents (FCNC)

Supriya Jain University of Oklahoma (on behalf of DØ collaboration) DPF, Hawaii 1 November 2006

- Introduction
 - Single top quarks at the Tevatron
- Status of FCNC searches (top quark sector)
- Details of the analysis
 - Signal modeling
- Event yields and kinematic distributions
- Neural network analysis
- Results: limits on FCNC couplings
- Conclusions

3

• In the Standard Model, production of single top quarks can occur through a W boson exchange q'

• Additional single top events are also possible from non-SM interactions, for example, from *flavor-changing neutral-currents* (FCNC)

4

• Exchange of a Z/γ :

- Limits from studies of the FCNC decays of the top quark

B($t \to q\gamma$) < 0.032, and B($t \to qZ$) < 0.33 ($\kappa_{\gamma} < 0.4$) ($\kappa_{z} < 0.7$) (CDF at Tevatron) Phys. Rev. Lett. 80, 2525 (1998), Phys. Lett. B426, 393 (1998)

- Limits from studies of single top-quark production and decay

focus of present search!

Representative 2->2 Feynman diagrams

• Phenomenological results using data from HERA - $\kappa_{u, c} / \Lambda < 0.4 \text{ TeV}^{-1}$ (hep-ph/0604119)

• <u>Data sample</u>: **230 pb**⁻¹ of lepton+jets data

(lepton: electron or muon)

[Phys. Lett. B 622, (2005)]

- Backgrounds:
 - -W/Z+jets and diboson production ("W+jets")
 - -Top-pair production ("ttbar")
 - -Multi-jet events

• <u>Selections:</u>

- Leptons: $p_T > 15 \text{ GeV}$ $|\eta_{det}| < 1.1 \text{ (electron)}$
 - $|\eta_{det}| < 2.0 \text{ (muon)}$
- MET: 15 GeV<MET<200 GeV
- Njets: $2 \le Njets \le 4$
- Jets: $E_{_{T}} > 15 \text{ GeV}, |\eta_{_{det}}| < 3.4$
- Leading jet: $E_{_T} > 25 \text{ GeV}, |\eta_{_{det}}| < 2.5$

• <u>Data sample</u>: **230 pb**⁻¹ of lepton+jets data

(lepton: electron or muon)

[Phys. Lett. B 622, (2005)]

- Backgrounds:
 - -W/Z+jets and diboson production ("W+jets")
 - -Top-pair production ("ttbar")
 - -Multi-jet events

Include SM single top production ("tb" and "tqb") • <u>Selections:</u>

- Leptons: $p_T > 15 \text{ GeV}$ $|\eta_{det}| < 1.1 \text{ (electron)}$
 - $|\eta_{det}| < 2.0 \text{ (muon)}$
- MET: 15 GeV<MET<200 GeV
- Njets: $2 \le Njets \le 4$
- Jets: $E_{_{T}} > 15 \text{ GeV}, |\eta_{_{det}}| < 3.4$
- Leading jet: $E_{_T} > 25 \text{ GeV}, |\eta_{_{det}}| < 2.5$

• Data sample: 230 pb⁻¹ of lepton+jets data

(lepton: electron or muon)

[Phys. Lett. B **622**, (2005)] (≥ one b-tagged jets)

- Backgrounds:
 - -W/Z+jets and diboson production ("W+jets")
 - -Top-pair production ("ttbar")
 - -Multi-jet events

Include SM single top production ("tb" and "tqb")

• <u>Selections:</u>

- Leptons: $p_{_{\rm T}} > 15 \mbox{ GeV}$ $|\eta_{_{det}}| < 1.1 \mbox{ (electron)}$
 - $|\eta_{det}| < 2.0 \text{ (muon)}$
- MET: 15 GeV<MET<200 GeV
- Njets: $2 \le Njets \le 4$
- Jets: $E_{_{T}} > 15 \text{ GeV}, |\eta_{_{det}}| < 3.4$
- Leading jet: $E_{_T} > 25 \text{ GeV}, |\eta_{_{det}}| < 2.5$

Require only one b-tagged jet

("SVT"

S. Jain

Signal modeling

• Use LO CompHEP event generator

where,

f: *u*-quark, or *c*-quark G: gauge field tensor of gluon κ_{f} : strength of *tgu* or *tgc* couplings

 Λ : scale of new physics

 We correct the LO cross section to NLO by a K-factor of 1.6 [Phys. Rev. D 72, 074018 (2005)]

Signal modeling

• Use LO CompHEP event generator

- We correct the LO cross section to NLO by a K-factor of 1.6 [Phys. Rev. D 72, 074018 (2005)]
- The production cross sections scale up quadratically with $\kappa_{_f}$ / Λ (effect of FCNC couplings on top quark decay is negligible for $\kappa_{_f}$ / Λ < 0.2 TeV⁻¹)
- Therefore, signal samples for any value of $\kappa_{_f}$ / Λ can be scaled quadratically to obtain the kinematic distributions at any other value of $\kappa_{_f}$ / Λ
- 10 We choose that value to be $\kappa_f / \Lambda = 0.03 \text{ TeV}^{-1}$ S. Jain

• Event yields after full detector simulation, and same selections as in the SM single top search

	Electron channel	Muon channel
Signals: "tug"	8.4 ± 2.1	9.8 ± 2.7
<i>"tcg"</i>	0.6 ± 0.2	0.6 ± 0.2
Backgrounds		
SM single top	6.4 ± 1.4	6.1 ± 1.4
ttbar	31.8 ± 6.9	31.4 ± 7.0
W+jets	84.6 ± 10.2	76.8 ± 8.5
multi-jets	13.7 ± 4.3	17.2 ± 1.5
Sum of Backgrounds	136.5 ± 13.4	131.5 ± 12.7
Observed	134	118

Systematic Uncertainties		
Integrated luminosity	$\mathbf{6.5\%}$	
Lepton ID	4 %	
Theory cross sections	9-18%	
Jet Fragmentation	5 %	
Jet ID	1 - 9 %	
Jet Energy Scale	1-16%	
b-tag modeling	5-13%	
Trigger Modeling	2 - 8 %	

Kinematic distributions

- We use neural networks to separate the FCNC signals from the backgrounds
- When training, we consider
 - Signal: sum of *tgc* and *tgu* processes
 - -Background: sum of all SM processes
- We consider the following 10 input variables representing

<u>Individual object kinematics</u> $p_{T}(jet1), p_{T}(tagged jet),$ η (lepton), Missing E_T Global event kinematics $H_{T}(jet1, jet2), p_{T}(W),$ p_T(jet1, jet2), M(all jets), Top Mass (using tagged jet) Angular correlations Cos(lepton, jet1) in the lab frame

Neural network output

• For combined electron and muon channels

- We use Bayesian statistics to extract limits on $\kappa_{_{\rm H}}/\Lambda$ and $\kappa_{_{\rm C}}/\Lambda$
 - we assume priors flat in $(\kappa_{\rm p}/\Lambda)^2$ and $(\kappa_{\rm c}/\Lambda)^2$
- We compute the posterior probability density in the 2-D plane of (κ_u / Λ)² versus (κ_c / Λ)², from which we extract
 (a) 2-D limit contours, and (b)1-D limits

Observed Limits (electron and muons combined)

(For expected limits, the data is set to the estimated background yield)

- We performed a first search at the Tevatron for FCNC interactions involving the top quark and a gluon q
 - we looked for the production of single top quarks
- We found no evidence of an FCNC signal
 - limits, at 95% CL, on the FCNC couplings are $\kappa_u / \Lambda < 0.037 \text{ TeV}^{-1}$, $\kappa_c / \Lambda < 0.148 \text{ TeV}^{-1}$

- these are much better than previous limits (0.4 TeV⁻¹, hep-ph/0604119)
 - by a factor 11 for κ_{μ} / Λ
 - by a factor 3 for κ_c / Λ
- Draft for publication is in preparation

Back-up slides

 \bullet The cross sections can be significantly enhanced depending on the value of the coupling κ

NLO cross sections of single top production		
through FCNC interactions involving gluons		
$\kappa/\Lambda \; [\text{TeV}^{-1}]$	$\sigma(t) \; [{ m pb}]$	
0.01	0.9	
0.03	8.0	
0.07	45.0	
0.11	110.0	
0.19	323.0	