Search for single top quarks via flavor-changing neutral currents (FCNC)

Supriya Jain
University of Oklahoma
(on behalf of DØ collaboration)
DPF, Hawaii
1 November 2006
• Introduction
 – Single top quarks at the Tevatron
• Status of FCNC searches (top quark sector)
• Details of the analysis
 – Signal modeling
• Event yields and kinematic distributions
• Neural network analysis
• Results: limits on FCNC couplings
• Conclusions
Single top quarks at the Tevatron

• In the Standard Model, production of single top quarks can occur through a W boson exchange

$$\sigma_{\text{NLO}} = 0.88 \pm 0.07 \text{ pb}$$

• Additional single top events are also possible from non-SM interactions, for example, from \textit{flavor-changing neutral-currents} (FCNC)
Status of FCNC searches (top quark sector)

- **Exchange of a Z/γ:**

 - Limits from studies of the FCNC decays of the top quark

 \[
 B(t \to q\gamma) < 0.032, \quad \text{and} \quad B(t \to qZ) < 0.33
 \]

 \[
 (\kappa_\gamma < 0.4) \quad (\kappa_Z < 0.7)
 \]

 (CDF at Tevatron)

- Limits from studies of single top-quark production and decay

 \[
 \kappa_{\gamma, Z} < 0.4 \quad \text{(L3 at LEP)}
 \]

 \[
 \kappa_\gamma < 0.18 \quad \text{(ZEUS at HERA)}
 \]

Status of FCNC searches (top quark sector)

- Exchange of a gluon: focus of present search!

Representative 2->2 Feynman diagrams

- Phenomenological results using data from HERA
 \[\kappa_{u,c} / \Lambda < 0.4 \text{ TeV}^{-1} \] (hep-ph/0604119)
Details of the analysis

Data sample: 230 pb$^{-1}$ of lepton+jets data
(lepton: electron or muon)

Backgrounds:
- W/Z+jets and diboson production (“W+jets”)
- Top-pair production (“ttbar”)
- Multi-jet events

Selections:
- Leptons: $p_T > 15$ GeV
 $|\eta_{\text{det}}| < 1.1$ (electron)
 $|\eta_{\text{det}}| < 2.0$ (muon)
- MET: 15 GeV $<$ MET $<$ 200 GeV
- Njets: $2 \leq \text{Njets} \leq 4$
- Jets: $E_T > 15$ GeV, $|\eta_{\text{det}}| < 3.4$
- Leading jet: $E_T > 25$ GeV, $|\eta_{\text{det}}| < 2.5$
Details of the analysis

- **Data sample:** 230 pb$^{-1}$ of lepton+jets data
 (lepton: electron or muon)

- **Backgrounds:**
 - W/Z+jets and diboson production (“W+jets”)
 - Top-pair production (“ttbar”)
 - Multi-jet events

Include

SM single top production
(“tb” and “tqb”)

- **Selections:**
 - Leptons: $p_T > 15$ GeV
 $|\eta_{\text{det}}| < 1.1$ (electron)
 $|\eta_{\text{det}}| < 2.0$ (muon)
 - MET: 15 GeV < MET < 200 GeV
 - Njets: $2 \leq \text{Njets} \leq 4$
 - Jets: $E_T > 15$ GeV, $|\eta_{\text{det}}| < 3.4$
 - Leading jet: $E_T > 25$ GeV, $|\eta_{\text{det}}| < 2.5$

Data sample: 230 pb$^{-1}$ of lepton+jets data
(lepton: electron or muon)

(≥ one b-tagged jets)

Backgrounds:
- W/Z+jets and diboson production ("W+jets")
- Top-pair production ("ttbar")
- Multi-jet events

Selections:
- Leptons: $p_T > 15$ GeV
 $|\eta_{\text{det}}| < 1.1$ (electron)
 $|\eta_{\text{det}}| < 2.0$ (muon)
- MET: 15 GeV $<$ MET $<$ 200 GeV
- Njets: $2 \leq$ Njets ≤ 4
- Jets: $E_T > 15$ GeV, $|\eta_{\text{det}}| < 3.4$
- Leading jet: $E_T > 25$ GeV, $|\eta_{\text{det}}| < 2.5$

Include
SM single top production
("tb" and "tqb")

Require
only one b-tagged jet
("SVT")

S. Jain
• Use LO CompHEP event generator

Effective Lagrangian:

\[\frac{\kappa_f}{\Lambda} g_s \frac{1}{f} \sigma^{\mu\nu} \frac{\lambda^a}{2} t G^a_{\mu\nu} \]

where,

\(f \): u-quark, or c-quark

G: gauge field tensor of gluon

\(\kappa_f \): strength of tgu or tgc couplings

\(\Lambda \): scale of new physics

• We correct the LO cross section to NLO by a K-factor of 1.6

[Phys. Rev. D 72, 074018 (2005)]
Signal modeling

- Use LO CompHEP event generator

Effective Lagrangian:

\[\frac{\kappa_f}{\Lambda} g_s f \bar{\sigma}^{\mu\nu} \frac{\lambda^a}{2} t G^a_{\mu\nu} \]

where,
- \(f \): \(u \)-quark, or \(c \)-quark
- \(G \): gauge field tensor of gluon
- \(\kappa_f \): strength of \(tgu \) or \(tgc \) couplings
- \(\Lambda \): scale of new physics

- We correct the LO cross section to NLO by a \(K \)-factor of 1.6

 [Phys. Rev. D 72, 074018 (2005)]

- The production cross sections scale up quadratically with \(\kappa_f / \Lambda \)

 (effect of FCNC couplings on top quark decay is negligible for \(\kappa_f / \Lambda < 0.2 \) TeV\(^{-1} \))

- Therefore, signal samples for any value of \(\kappa_f / \Lambda \) can be scaled quadratically to obtain the kinematic distributions at any other value of \(\kappa_f / \Lambda \)

- We choose that value to be \(\kappa_f / \Lambda = 0.03 \) TeV\(^{-1} \)
Event yields

- Event yields after full detector simulation, and same selections as in the SM single top search

<table>
<thead>
<tr>
<th></th>
<th>Electron channel</th>
<th>Muon channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signals:</td>
<td>“tug”</td>
<td>8.4 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>“tcg”</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>Backgrounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM single top</td>
<td>6.4 ± 1.4</td>
<td>6.1 ± 1.4</td>
</tr>
<tr>
<td>ttbar</td>
<td>31.8 ± 6.9</td>
<td>31.4 ± 7.0</td>
</tr>
<tr>
<td>W+jets</td>
<td>84.6 ± 10.2</td>
<td>76.8 ± 8.5</td>
</tr>
<tr>
<td>multi-jets</td>
<td>13.7 ± 4.3</td>
<td>17.2 ± 1.5</td>
</tr>
<tr>
<td>Sum of Backgrounds</td>
<td>136.5 ± 13.4</td>
<td>131.5 ± 12.7</td>
</tr>
<tr>
<td>Observed</td>
<td>134</td>
<td>118</td>
</tr>
</tbody>
</table>
Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td>6.5%</td>
</tr>
<tr>
<td>Lepton ID</td>
<td>4%</td>
</tr>
<tr>
<td>Theory cross sections</td>
<td>9 – 18%</td>
</tr>
<tr>
<td>Jet Fragmentation</td>
<td>5%</td>
</tr>
<tr>
<td>Jet ID</td>
<td>1 – 9%</td>
</tr>
<tr>
<td>Jet Energy Scale</td>
<td>1 – 16%</td>
</tr>
<tr>
<td>b-tag modeling</td>
<td>5 – 13%</td>
</tr>
<tr>
<td>Trigger Modeling</td>
<td>2 – 8%</td>
</tr>
</tbody>
</table>
Kinematic distributions
Neural network analysis

- We use neural networks to separate the FCNC signals from the backgrounds.
- When training, we consider:
 - Signal: sum of \(tgc \) and \(tgu \) processes
 - Background: sum of all SM processes
- We consider the following 10 input variables representing:

 Individual object kinematics
 - \(p_T(\text{jet1}) \), \(p_T(\text{tagged jet}) \), \(\eta(\text{lepton}) \), \(\text{Missing } E_T \)

 Global event kinematics
 - \(H_T(\text{jet1, jet2}) \), \(p_T(W) \), \(p_T(\text{jet1, jet2}) \), \(M(\text{all jets}) \),
 - Top Mass (using tagged jet)

 Angular correlations
 - \(\cos(\text{lepton, jet1}) \) in the lab frame
Neural network output

- For combined electron and muon channels

(a) normalized to unity

(b) normalized to data

DØ Run II preliminary
We use Bayesian statistics to extract limits on κ_u / Λ and κ_c / Λ

- we assume priors flat in $(\kappa_u / \Lambda)^2$ and $(\kappa_c / \Lambda)^2$

We compute the posterior probability density in the 2-D plane of $(\kappa_u / \Lambda)^2$ versus $(\kappa_c / \Lambda)^2$, from which we extract

(a) 2-D limit contours, and (b) 1-D limits
Observed Limits (electron and muons combined)

\[(\frac{\kappa_c}{\Lambda})^2 \leq (0.164 \text{ TeV})^{-1}, \]
\[(\frac{\kappa_u}{\Lambda})^2 \leq (0.046 \text{ TeV})^{-1}, \]
\[(\frac{\kappa_c}{\Lambda})^2 \leq (0.210 \text{ TeV})^{-1}, \]
\[(\frac{\kappa_u}{\Lambda})^2 \leq (0.049 \text{ TeV})^{-1}, \]
\[(\frac{\kappa}{\Lambda})^2 \leq (0.148 \text{ TeV})^{-1}, \]
\[(\frac{\kappa}{\Lambda})^2 \leq (0.037 \text{ TeV})^{-1}, \]

DØ Run II preliminary

95% CL
90% CL
68% CL
Summary of limits

<table>
<thead>
<tr>
<th></th>
<th>κ_u/Λ</th>
<th>κ_c/Λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron channel</td>
<td>0.046 (0.052)</td>
<td>0.164 (0.190)</td>
</tr>
<tr>
<td>Muon channel</td>
<td>0.049 (0.050)</td>
<td>0.210 (0.205)</td>
</tr>
<tr>
<td>e+µ combined</td>
<td>0.037 (0.041)</td>
<td>0.148 (0.161)</td>
</tr>
</tbody>
</table>

(For expected limits, the data is set to the estimated background yield)

Ensemble tests

- **e, µ combined channel, with all systematics**
 - Nensemble: 500
 - κ_u/Λ (obs. limit) = 0.037 TeV$^{-1}$
 - κ_c/Λ (obs. limit) = 0.148 TeV$^{-1}$
Conclusions

- We performed a first search at the Tevatron for FCNC interactions involving the top quark and a gluon
 - we looked for the production of single top quarks

- We found no evidence of an FCNC signal
 - limits, at 95% CL, on the FCNC couplings are
 $\kappa_u / \Lambda < 0.037 \text{ TeV}^{-1}$, $\kappa_c / \Lambda < 0.148 \text{ TeV}^{-1}$
 - these are much better than previous limits (0.4 TeV^{-1}, hep-ph/0604119)
 - by a factor 11 for κ_u / Λ
 - by a factor 3 for κ_c / Λ

- Draft for publication is in preparation
Back-up slides
Single top production cross sections via FCNC

- The cross sections can be significantly enhanced depending on the value of the coupling κ

<table>
<thead>
<tr>
<th>NLO cross sections of single top production through FCNC interactions involving gluons</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ/Λ [TeV$^{-1}$]</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.03</td>
</tr>
<tr>
<td>0.07</td>
</tr>
<tr>
<td>0.11</td>
</tr>
<tr>
<td>0.19</td>
</tr>
</tbody>
</table>