Right Handed Neutrinos and Higgs Boson Decay

Michael Graesser, Rutgers University

(work in progress)

Motivation in Three Parts

New physics beyond the Standard Model

$$\Delta m_{
m sun}^2 \simeq (9 imes 10^{-3} {
m eV})^2$$

 $\Delta m_{
m atm}^2 \simeq (5 imes 10^{-2} {
m eV})^2$

Dirac or Majorana?

Majorana: What is the mass scale? Presume that Majorana masses are at the weak scale. Related to Higgs mass?

$$\mathcal{L}_{\mathcal{R}} = \frac{1}{2} M_R \nu_R \nu_R + \lambda_\nu H^* L \nu_R + \lambda_l H L e^c$$

See-saw leads to :

$$m_{\nu_L} \simeq \lambda_{\nu} \frac{1}{M_R} \lambda_{\nu}^T v^2$$

Typically need

$$\lambda_{\nu} \simeq 2 * 10^{-7} \left(\frac{m_{\nu_L}}{1/10 \text{eV}}\right)^{1/2} \left(\frac{M_R}{30 \text{GeV}}\right)^{1/2}$$

2

Motivation (cont'd)

2. Baryogenesis from Leptogenesis

- CP violation, L number violation
- Tiny couplings \Rightarrow out of equilibrium

Asaka and Shaposhnikov (2005) leptogenesis with $M_R \simeq 10$ GeV. Some lepton asymmetry converted to baryon asymmetry at the electroweak phase transition.

- 3. Higgs phenomenology
 - Light states or higher dimension operators can drastically modify the production crosssection and/or introduce new decay pro-Cesses Dermisek and Gunion (2005); Chang, Fox and Weiner (2005,2006); Strassler and Zurek (2006), Manohar and Wise (2006)
 - Dermisek and Gunion (2005); Chang, Fox and Weiner (2005,2006)

-
$$h \rightarrow aa$$
, $a \rightarrow b\overline{b}, gg, \gamma\gamma$

• Strassler and Zurek (2006):

-
$$pp \rightarrow Z' \rightarrow jets, \tau's, b's$$

- Displaced vertices

• Manohar and Wise (2005) Higher dimension operator

$$\delta \mathcal{L} = \frac{H^{\dagger} H}{\Lambda} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$$

- Modifies Higgs boson production crosssection and decay $(g \rightarrow \gamma)$
- Induced from couplings to light coloured scalars

Model

- Standard Model + 3 Right-handed Neutrinos
- More massive states interacting with both Higgs boson and Right-handed neutrinos

$$\Lambda \simeq {
m TeV} - 100' s {
m TeV}$$

$$\delta \mathcal{L}_{eff} = \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots + \text{h.c.}$$

$$\mathcal{O}^{(5)} = \frac{c^{(5)}}{2\Lambda} H^{\dagger} H \nu_R \nu_R$$

Electroweak symmetry breaking introduce coupling of higgs to right-handed neutrinos:

$$\delta \mathcal{L} = \frac{c^{(5)}v}{\sqrt{2}\Lambda} h \nu_R \nu_R$$

 $m_h > 2m_R$ Higgs boson can decay into righthanded neutrinos. For light Higgs boson, this new decay can dominate over decays to $\overline{b}b$ and $\gamma\gamma$

• Compare SM rates with Higgs decays to 3 flavors of light Right-Handed neutrinos:

$$\mathcal{R}_{XY} \equiv \frac{\sum_{i} \Gamma[h \to \nu_{L}^{(i)} \nu_{L}^{(i)}]}{\Gamma[h \to XY]}$$

$$\mathcal{R}_{b\overline{b}} = 1 \leftrightarrow \Lambda \simeq 17 \mathrm{TeV}$$

$$\mathcal{R}_{\gamma\gamma} = 10 \leftrightarrow \Lambda \simeq 200 \text{TeV}$$

Decays of the Right-handed Neutrinos

Two Sources

- Interactions with left-handed neutrinos
- Higher Dimension Operators

 ν_L

Small neutrino couplings \longrightarrow macroscopic decay lengths

 Universal right-handed neutrino masses and no CP violation in right-handed neutrino couplings

$$c\tau = 4m \left(\frac{30 \text{GeV}}{M_R}\right)^4 \left(\frac{10^{-1} \text{eV}}{m_{\nu_L}}\right) F\left(\frac{M_R^2}{m_W^2}\right)$$
$$F(0) = 1 \quad \beta \gamma \simeq \mathcal{O}(1)$$

- Right-handed neutrino masses M_R only completely unknown parameter
- Decay length insensitive to Λ

Experimental Limits

LEP

- Model-independent limit on Higgs mass (OPAL)
 : m_h > 82 GeV
- Invisible Limit ?
 - no limit if all 3 right-handed neutrinos decay within the detector; LEP detectors $R \simeq 6m$.
 - $m_h > 106$ GeV if one right-handed neutrino decays outside the detector $\leftrightarrow M_R < 20$ GeV or very light left-handed neutrino masses
 - can get neutrinos from Z^* but BF too low

• • • •

Tevatron

- Diphoton search $p\bar{p} \rightarrow \gamma \gamma + X$
 - Limits d = 6 magnetic moment decay

 $h \to \gamma \gamma \nu_L \nu_L$

 $\Lambda > 500 GeV$ but analysis has missing $E_T > 40 {\rm GeV}$ cut

 If right-handed neutrinos decay in the calorimeters

* $l = \mu \Rightarrow$ 'trackless muon'

* $l = e \Rightarrow$ 'photon'

· Di-photon limit may apply. But

 $h \to W^* W^* ee$

Six-body final state. To pass missing E_T cut need one or two neutrinos.

$$E_{
u_R} \simeq m_h/2 \simeq 40-50 {
m GeV}$$

13

One neutrino probably doesn't pass E_T cut (or low acceptance). With two neutrinos $\sigma \cdot BR$ just below combined experimental limit of ≈ 0.07 pb, assuming same acceptance as in analysis

- D0 search for displaced di-muons
 - * Analysis restricted to 5cm-20cm.
 - Required that di-muons reconstructed to a common vertex
 - * Need $h \to N_2 N_2$, $N_2 \to \mu W^*$ and a μ from the W^* decay

$\sigma \cdot BF \simeq 0.09 {\rm pb}$

* below experimental limit $\simeq 0.14$ pb.

Conclusions

- Scenario with right-handed neutrinos at electroweak scale
- Higher dimension operators combining righthanded neutrinos and Standard Model Higgs boson
 - Possible new decay channel for Higgs boson
 - New decays can dominate $b\overline{b}$ up to tens of TeV, dominate $\gamma\gamma$ to hundreds of TeV
 - * Macroscopic decays $O(\mu m m)$
 - Decay length of right-handed neutrinos only dependent on their masses and is insensitive to scale of higher dimension operators