Ve appearance studies in MINOS

Mayly Sanchez Harvard University

Seeing Ve's in MINO Main Injector Neutrino Oscillation Search

2

Mayly Sanchez - Harvard University

•Using the NUMI beam from Fermilab.

•Measure and understand the background at the Near detector (Fermilab).

•Search for V_e signal at the Bar detector, 735 km away (Soudan).

•If muon neutrinos oscillate into electron neutrinos, we will see an excess over the predicted background.

input parameters from the v_{μ} experimental disappearance analysis parameters * Ignoring matter effects, CP violation and solar terms. 3 DPF 2006 - October 30, 2006

Mayly Sanchez - Harvard University

Measuring θ_{13} past, present and future $|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k} |\nu_{k}\rangle \quad (\alpha = e, \mu, \tau)$ $\theta_{12}, \theta_{23}, \theta_{13}, CP$ phase $\mathbf{U} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\mu 3} \end{pmatrix} =$ $\Delta m^2_{21} \Delta m^2_{32}$, 2 Majorana phases $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \bullet \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \bullet \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-i\alpha/2} & 0 \\ 0 & 0 & e^{-i\alpha/2+i\beta} \end{pmatrix}$ CHOOZ sensitivity (90% CL) $\Delta m^2 (eV^2)$ Best limit: Chooz Future experiments: 10⁻² Nova, T2K, $\Delta m^2 = 0.0027 eV^2$ Double Chooz, 10^{-3} Daya Bay 0.6 0.8 0.2 0.4 sin²(20) MINOS taking data today! sin²2013<0.12 @ 90%CL Mayly Sanchez - Harvard University DPF 2006 - October 30, 2006 4

Signal: v_e CC interaction: $v_e + N \rightarrow e + X$

Primary Background: NC interaction $v_l + N \rightarrow v_l + X$

Mayly Sanchez - Harvard University

• Main goal is separation between EM and hadronic showers (Neutral Currents).

- Typical EM shower characteristics
 - steel thickness: 2.54cm ~1.44X0
 - strip width: 4.12cm (Moliere rad ~3.7cm)
- Typical oscillated nue event is contained within a small region: 8 planes x 4 strips for a few GeV.
- Other background components:
 - •beam v_e,
 - high-y v_{μ} CC,

5

• oscillated v_{T} .

Candidate Ve in the ED data

Mayly Sanchez - Harvard University

6

Signal/BG separation

Ve appearance

 $\sin^2\theta_{23}=1.0$, $\Delta m^2_{32}=0.0027 \text{ eV}^2$

- Candidates must contain a compact shower and exhibit characteristic EM profile.
- Intense work has gone into constructing variables and pids that distinguish between EM and hadronic showers.
- Several discriminating techniques have been tried to enhance signal/ background separation.
 - Cuts, Multivariate Discriminant Analysis and ANN.
- Neural Net example shows:
 - efficiency 30%
 - sígnal/√background: ~2 at 4x10²⁰POT

Mayly Sanchez - Harvard University

$sin^2(2\theta_{13})=0.1$ (below Chooz)

	Signal	Tot. bg.	NC	V_e^{beam}	$v_{\mu}CC$	$v_{\tau}CC$
4x10 ²⁰ POT	7.3	14.6	9.8	2.0	1.5	1.3
16x10 ²⁰ POT	29.2	58.2	39.0	8.1	6.1	5.0

DPF 2006 - October 30, 2006

Signal/BG separation Ve appearance

• Expected events from MC for 4x10²⁰ POT

NC	9.8 (67%)	$\sin^2\theta_{23}=1.0$
CC	1.5 (10%)	$\Delta m^{2}_{32}=0.0027 \text{ eV}^{2}$
Beam v_e	2.0 (14%)	$sin^2(2\theta_{13})=0.1$
VT	1.3 (9%)	. ↓
total bg	14.6	> 7.3 signal events

Backgrounds will be estimated from data:
Muon removal in CC events: estimating NC bg.
Beam ν_e: fit pion and kaon spectrum in ND.
Beam ν_e: measure ν
_μ from μ⁺ → e⁺ν_eν_μ in ND.
Horn off data in ND: disentangle NC-CC.
Signal efficiency for DIS events: combine Muon removed CC events with MC electrons.

8

Mayly Sanchez - Harvard University

Estimating MC background using muon removal technique

- Remove the muon track in a selected v_{μ} CC event and use the rest as a fake NC event.
- We use events that pass our Charged Current event selection, i.e. that have a well defined track.
- We expect a >95% purity in this sample.
- Pulse height from the muon is accounted for and it is subtracted from shower hits.

Mayly Sanchez - Harvard University

Estimating MC background using muon removal technique

- By applying the PID selection to these events, this technique will verify/measure the NC background using a data/MC ratio of the MRCC events.
- Corrections need to be applied for CC selection efficiency, oscillation in the FD and CC/ NC cross-section ratio.
- Relies on the difference in overall charge and multiplicity of the hadronic system not changing the topology too much.
- It can be applied to the Near and the Bar data.

Estimating beam Ve background fitting the hadronic production

Beam Nue Parent Hadrons

- The v_e contamination in the beam derives from both pion and kaon decays
- Fitting hadronic production parameters using data in the Near Detector provides a first estimate of the beam nue background.

1.00

11

Mayly Sanchez - Harvard University

- $\pi^+ \rightarrow \nu_{\mu} \mu^+, \ \mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu}$ • $K^+ \rightarrow \nu_e \pi^0 e^+$
- $K_L^0 \rightarrow V_e e^+ \pi^-$

Estimating beam Ve background fitting the hadronic production

12

- The higher end of the spectrum allows us to add a separate set of constraints to the kaon production.
- A PID tuned to higher energy events can be used to extract kaon dominated beam nues.
- Very high purity and a flat efficiency for >10GeV.

Mayly Sanchez - Harvard University

Constraining the v_e flux from \bar{v}_{μ} measurement

 $No\overline{v_{\mu}}$ from μ + above this energy (E_{cut})

• The technique:

- Primary source of low energy beam v_e is: $\mu^+ \rightarrow e^+ v_e \overline{v}_{\mu}$
- A measurement of the low energy $\overline{\nu}_{\mu}$ can be used as another means to constrain the ν_{e} flux.
- Work on a PID and understanding of these events in the ND is in progress.

$$\phi_{\bar{\nu}}(\mu^+) = \phi_{\bar{\nu}}^{data}(\mu^+, \pi^-, K^{-/0}) - \phi_{\bar{\nu}}(\pi^-, K^{-/0})$$

• Estimating pion and kaon antineutrino flux can be done from different techniques: horn off, beam fits, etc.

13

Mayly Sanchez - Harvard University

Estimating background uncertainties using horn off data

- If we turn off the horns, the pions will not get focused and the peak in the neutrino energy spectrum will disappear.
- Once we apply the v_e selection cuts, we will get a NC-enriched sample.
- The measured flux of v_e candidates with horns on and horns off can expressed as:

$$N^{on} = N_{NC} + N_{CC} + N_{e}$$
(1)
$$N^{off} = r_{NC} * N_{NC} + r_{CC} * N_{CC} + r_{e} * N_{e}$$
(2)

which can be solved to get the NC and v_{μ} CC background.

 N_{NC} , N_{CC} : NC, v_{μ} CC background with horn on – will be calculated based on eqn. (1) and (2)

 N_e : beam v_e background with horn on – from MC or data $r_{NC(CC,e)} = N_{NC(CC,e)}^{off}/N_{NC(CC,e)} -$ from MC

14

Estimating background uncertainties using horn off data

- The advantage of this technique: it can separate different backgrounds and estimate the uncertainty of each component.
- Using a MC simulation with: 8.0x10¹⁸ POT horn off and 1.4x10¹⁹ POT horn on data; scaled to horn off data taken.
- We measure:
- We input and calculate:

 $r_{NC} = 0.532 \ r_{CC} = 0.129 \ r_e = 0.192, \ \delta r/r = 10\%$ $N_e = 199.2 \ \delta N_e = 39.8 - \text{assign a } 20\% \text{ systematic error}$

 $N^{on} = 1752.6$ $\delta N^{on} = 16.2$; $N^{off} = 681.0$ $\delta N^{off} = 26.1$

Expected background at ND for 2.73x10¹⁸ POT

	NC	ν _μ CC	Tot. bg.
background	1096.9±159.7	456.5±164.4	1752.6±232.6
error	14.6%	36.0%	13.3%

The optimistic scenario

Mayly Sanchez - Harvard University

Estimating background uncertainties using horn off data

- The advantage of this technique: it can separate different backgrounds and estimate the uncertainty of each component.
- For a MC símulation with: 8.0x10¹⁸ POT horn off and 1.4x10¹⁹ POT horn on data.

•	We	measure:
1.46		1110000010

• We	input	and
calc	ulate:	

 $r_{NC} = 0.532 r_{CC} = 0.129 r_e = 0.192, \delta r/r = 10\%$ N_e = 199.2 $\delta N_e = 199.2 - assign a 100\%$ systematic error

 $N^{on} = 1752.6$ $\delta N^{on} = 16.2$; $N^{off} = 681.0$ $\delta N^{off} = 26.1$

Expected background at ND for 2.73x10¹⁸ POT

	NC	ν _μ CC	Tot. bg.	
background	1096.9±162.5	456.5±232.8	1752.6±346.8	
error	14.8%	51.0%	19.8%	
NC uncertainty under control, total bg. error ranges from 13-20%				

Mayly Sanchez - Harvard University

16

Predicting the ED background for the Ve measurement

- As in the Charged Current analysis we will use the Near Detector data to perform extrapolation between Near and Far.
- We will use our knowledge of pion/kaon decay kinematics and geometry of our beamline to predict the FD expected background rate from the measured ND background components.

• The v_{τ} background will instead be estimated from MC to be: 1.3±1.1(stat)± 0.5(syst) for 4x10²⁰POT.

Mayly Sanchez - Harvard University

17

Physics reach of MINOS

Ve appearance

- We have a chance at making the first measurement of θ13.
 - Matter effects can change v_e yield by as much as $\pm 20\%$
- Plot shows δ_{CP} vs. $\sin^2 2\theta_{13}$ for both hierarchies for MHNOS best fit value at $4x10^{20}$ POT
 - 10% systematic effect included
- We can improve on current best limit (Chooz).

90% CL Sensitivity to sin²(2013) δ (π) MINOS $\Delta m_{23}^2 = 2.7 \ 10^{-3} \ eV^2$ 1.8 $\sin^2(2\theta_{23}) = 1$ 4x10²⁰ pot 1.6 1.4 CHOOZ 1.2 90% CL Excluded 1 0.8 0.6 **MINOS Preliminary** 0.4 $- \Delta m^2 > 0$ $\Delta m^2 < 0$ 0.2 0 -2 -1 10 10 sin²(2013)

Physics reach of MINOS

Ve appearance

- We have a chance at making the first measurement of θ13.
 - Matter effects can change v_e yield by as much as $\pm 20\%$
- Reach depends on POT
 With 16x10²⁰ POT we can make significant improvements to the current best limit and improve the chances of a discovery.

19

- •We have a number of independent techniques to evaluate the background components for the V_e appearance measurement.
- •We will extrapolate these measurements in order to predict the background rate in the Far Detector.

•Expect 4x10²⁰POT next year!

Backup Slides

Mayly Sanchez - Harvard University

10.10

Systematics for CC analysis

- Normalization: $\pm 4 \%$
 - POT counting, Near/Far selection efficiency
- Relative shower energy scale: $\pm 3\%$
 - Inter-Detector calibration uncertainty
- Muon energy scale: $\pm 2\%$
 - Uncertainty in dE/dX in MC
- NC contamination of CC-like sample: $\pm 30\%$
 - · From shape and normalization of ND PID distributions
- CC cross-section uncertainties
 - $M_A(QEL)$ and $M_A(RES)$: $\pm 5\%$
 - KNO RES-DIS scaling factor: ± 20%
- Intranuclear rescattering: $\pm 10\%$ shower energy scale uncertainty
- Beam uncertainty: difference between fits and weighted/ unweighted MC