

R&D of Thinned CMOS Pixel Sensors for the ILC Vertex Tracker

Ben Hooberman

DPF2006

Ben Hooberman^{1*}, Marco Battaglia¹, Devis Contarato², Kristen Flowers², Lindsay Glesener¹, Leo Greiner², Piero Giubilato³, Howard Wieman²

- ¹University of California at Berkeley and Lawrence Berkeley National Laboratory
- ²Lawrence Berkeley National Laboratory
- ³Lawrence Berkeley National Laboratory and INFN, Padova

*benhooberman@berkeley.edu

special thanks to Robert Foglia, Aptek Industries

Table of Contents

- The International Linear Collider and the Vertex Tracker
- CMOS Pixel Sensors: Principle of Operation
- Back-Thinning Studies
- A Thinned CMOS Pilot Telescope
- The Next Step: Toward a Low Mass Detector Module
- Conclusions and Outlook

The International Linear Collider

e⁺e⁻ collider proposed for construction ~2010

- ILC/LHC complementarity
- Tunable E_{cm} up to 0.5 TeV, upgradeable to 1.0 TeV
 Precision physics in TeV regime

	LHC	ILC	Physics Program	
particles	рр	ee		
E _د geometry	14 TeV circular	tunable 0.5-1.0 TeV linear	 Measure Higgs couplings and quantum numbers 	
role advantages	discovery high E _{cm}	precision measurement tunable energy low background	 Probe physics beyond SM and its rel to dark matter 	

The ILC Vertex Tracker

Geometry

- Cylindrical layers (multi-barrel)
- Ladders of silicon sensors

Function

- Extrapolate charged particle interaction point (vertex)
- Primary/secondary particle discrimination
- b/c/τ tagging, vertex charge determination

Layer	Radius [mm]	Length [mm]
1	16.6	100
2	27.6	250
3	39.6	250
4	50.6	250
5	61.6	250
	01.0	200

Physics Requirements for VTX

- Impact parameter resolution: $[5 \oplus 10/p \sin^{3/2}(\theta)]$ mm
 - → Spatial extrapolation resolution: σ < 4 mm —
 - \rightarrow Multiple scattering: X/X₀ < 0.1% per layer -
- High granularity (high background)
- Radiation tolerance, fast readout

Monolithic

Pixel Sensors

Full VTX Simulation and Reconstruction

Validation and Optimization

Mokka + Marlin Simulation vs. 1.5 GeV e⁻ Data

- Relative cluster size as a function of incidence angle
- Validate simulation/reconstruction with beam test data

ars of World-Cle

Science

1021-20

.....

Mokka + Marlin Simulation

- Determine impact parameter resolution over p_T range
- Determine performance for various sensor designs/detector configurations

Ben Hooberman DPF2006

CMOS Pixel Sensors

Principle of Operation

- Ionizing particle generates electron-hole pairs in silicon
- Electrons → collection diodes via thermal diffusion (no applied E-field)

Structure: 3 integrated layers

- ~10 µm electronics layer: read-out and logic/data processing
- 10-20 µm epi-layer: P-type sensitive volume, low resistivity, undepleted
- 300-500 µm bulk SI: structural support/substrate

Advantages of CMOS:

- Integration of readout/logic electronics on single substrate
- Small feature size allows pixels of small pitch
- Widely available, cheap commercial process
- CMOS R&D @ LBL supported by 3-year LDRD grant

Back-Thinning: Motivation and Strategy

- Vertex Tracker at ILC requires 0.1% Χ₀ / layer (< 50 μm Si)</p>
- CMOS Sensors: sensitive layer thickness 10 20 µm and ~400 µm bulk Si
- Perform back-thinning: remove majority of bulk Si by mechanical grind process
- Aptek Industries capable of grinding single chip to minimum thickness 25 µm
- Strategy: characterize individual diced chip before and after thinning to study effects on charge collection
- Some degradation observed in earlier studies with back-thinned CMOS sensors
- Goal: demonstrate CMOS sensors can be thinned without sacrifice in performance

The MimosaV Prototype Chip

- produced at IPHC, Strasbourg 0.6 µm AMS CMOS
- > 1 million pixels, 1.7 x 1.7 cm² active area (large)
- 14 μm epi-layer, 17 μm pixel pitch, 450 μm thick
- 4 independent sectors of 512 x 512 pixels
- analog output

Characterization Procedure

Step 1: Characterization

- Use 5.9 keV peak in ⁵⁵Fe spectrum to measure charge-to-voltage conversion gain
- Probe charge generation in epitaxial layer with 850 nm laser
- 1.5 GeV e⁻ test beam at Advanced Light Source at LBNL

Step 2: Back-Thinning

- Chip is mounted to grinding plates, wet grind process
- Achieve arbitrary thickness down to 25 μm with flat back surface

Step 3: Re-characterization

Repeat testing procedure and compare with prior results

Results for Thinning to 50 μm

- Fit gaussian to 5.9 keV peak pre/post-thinning to measure change in gain
- Results for multiple sectors of 1 chip: [7±8]% decrease in mean of Gaussian best-fit
- No significant change in gain observed

- Fit Landau function to 1.5 GeV e- spectrum to measure change in collected charge
- Results for multiple sectors of 1 chip: [9±7]% decrease in MPV collected charge
- No significant change in collected charge

Results for Thinning to 40 μm

- Fit gaussian to 5.9 keV peak pre/post-thinning to measure change in gain
- Results for multiple sectors of 1 chip: [2±2]% decrease in mean of Gaussian best-fit
- No significant change in gain observed

- Fit Landau function to 1.5 GeV e- spectrum to measure change in collected charge
- Results for multiple sectors of 1 chip: [2±4]% increase in MPV collected charge
- No significant change in collected charge

850 nm Laser Results

- Results for multiple sectors of 1 chip: [16±6]% decrease in collected charge
- Some evidence of signal loss

- Results for multiple sectors of 1 chip: [10±6]% decrease in collected charge
- Some evidence of signal loss

120

140 Electrons

Summary of Results

Thickness	1-pix Noise	Fe-55	850 nm	1.5 GeV e ⁻	1.5 GeV e ⁻ S/N
50 μm	+3±7	-7±8	-16±6	-9±7	-1±1
40 µm	+8±13	-2±2	-10±6	+2±4	-1±3

Results equal (R_{after}- R _{before})/R_{before} x 100%, refer to multiple sectors of CMOS sensor

- Slight increase in single pixel noise
- Charge-to-voltage conversion gain not significantly affected
- Some signal loss for 850 nm lasers
- Total charge collected for 1.5 GeV e⁻ not significantly affected
- No change in cluster S/N at 1.5 GeV e⁻ beam detected

Encouraging results for prospects of CMOS VTX at ILC!

A Thinned Pixel Pilot Telescope (TPPT)

Background

- Build working prototype capable of tracking particles
- Multiple CMOS sensor planes and detector under test (DUT)
- Use ALS 1.5 GeV e⁻ test beam

Motivation

- Proof of principle of thin CMOS capable of tracking in realistic environment
- Study tracking with tunable track multiplicity, adjustable to expected ILC multiplicity
- Use telescope planes to extrapolate particle position on DUT → measure impact parameter resolution
- Characterize new sensors

Telescope Simulation Effort

Simulation

- GEANT4 generation/simulation + Marlin reconstruction
- Full pattern recognition and track-fitting
- Same reconstruction environment as for ILC VTX → validate sim/reco with real data

Sources of Error

- Spatial resolution of sensors
- Extrapolation error
- Multiple scattering

Real data: additional alignment and flatness error

Telescope Experimental Setup

Data Acquisition and Analysis

- Labview: pedestal subtract, noise, CDS, on-line data sparsification
- Marlin: off-line reconstruction/analysis

Configuration

- 3 planes of thin Mimosa V sensors (40 μm, 50 μm, 50 μm) + DUT
- Spacing ~17 mm, T = 27°C
- 1.5 GeV e⁻ test beam at ALS

Readout

- Custom board (FPGA, 14-bits ADC's)
- Synchronized with 1 Hz extraction cycle
- 2 frames after reset, CDS
- 1 sector/layer (>10⁶ pixels/event)

Preliminary Telescope Results

Toward a Low Mass Ladder Detector Module

- Template provided by STAR group @ LBL (Solenoidal Tracker at RHIC)
 - → QGP experiment at Brookhaven
 - → Heavy Flavor Tagger identifies low p_T secondary particles from charm production in heavy ion collisions→requires ultra-low material budget to minimize multiple scattering
- STAR has chosen thin CMOS on light-weight ladders → achieved lowest material budget ladder structures to date. Use STAR as template, further reduce material budget.

The STAR Detector Module

Component	Thickness (% X ₀)
CMOS Sensor	0.053
Adhesive	0.014
Cable	0.090
Adhesive	0.014
Support Carrier	0.110
Total	0.282

3 Components integrated in module

- Sensor: thin CMOS
- Cable: data transfer, clock/control, power, ground
- Carrier: RVC/carbon fiber

- Detector is < 20% of module thickness</p>
- STAR has achieved < 0.3% X₀ / layer
- ILC VTX requires factor ~3x thinner

ILC Ladder Studies Underway

Funding approved for LCRD project

- STAR ladder \rightarrow prototype meeting ILC requirements
- Reduce material budget of support carrier, eliminate cabling using chip stitching
- Characterize mechanical deformation due to thermal effects from power cycling

Current Design

- Support: beryllium sandwiched around carbon fiber
- Finite Element Analysis (FEA) underway, prototyping next year
- Outlook: integrate thin CMOS chips, test module using telescope at 1.5 GeV e⁻ beam

Conclusions and Outlook

- Successful thinning of CMOS sensors to \leq 50 μ m demonstrated with no appreciable performance loss
- Beam telescope with thin CMOS sensors designed, built and commissioned at ALS 1.5 GeV e⁻ test beam
- Recently approved LCRD funds for vertex ladder engineering, studies underway
- Characterize ladders with pixel telescope
- (generation → simulation → reconstruction) full software chain complete, use in future R&D effort

Previous Back-Thinning Studies***

STAR

- Compare beam test data with Bichsel simulation assuming 8 μm epi-layer
- Indication of significant signal from bulk silicon

ars of World-Cla

Science

rrrrr

SUCIMA

- Compare beam test data pre/post thinning to 15 μm (use epi-layer as etch stop)
- Significant signal loss: less reflection at epi-substrate boundary?

Ben Hooberman DPF2006

Experimental Setup***

Chip is mounted to mezzanine card, mezzanine card is mounted to motherboard

MimosaV Prototype Chip

- produced at IPHC Strasbourg w/ 0.6 µm AMS CMOS process
- > 1 million pixels, 1.7 x 1.7 cm² active area (large)
- 14 μm epitaxial layer, 17 μm pixel pitch, 450 μm thick
- 4 independent sectors of 512 x 512 pixels, analog output

Motherboad

- custom board produced at LBNL
- Programmable Xilinx FPGA
- On-board 14-bit ADC's

Characterization Tools***

- When 5.9 keV X-ray from ⁵⁵Fe converts in shallow depletion region nearly 100% of generated charge reaches collection diode.
- 5.9 keV / 3.6 eV average ionization energy = 1640 electrons/ X-ray
- 1640 electrons / 207 counts gives calibration of ~8 electrons/ADC count

- Penetration depth of photons in silicon is strongly dependent on wavelength in range 850-1300 nm
- 850 nm: ~10 µm depth probes only epitaxial layer
- 1060 nm: ~1000 µm depth allows photon to pass through entire detector

Back-Thinning Procedure***

Step 1: Attach chip to mezzanine card with removable WaferGrip adhesive (characterize)

Step 2: Remove glue by placing in heated solvent

Step 3: Back-thinning

Step 4: Re-attach chip to mezzanine card with permanent glue (re-characterize)

	Chip Status		Results
	5	thinned to 50 μ m	Electrically functional
nt	14	thinned to 50 μm	Not electrically functional (scratch)
	16	thinned to 50 μ m	Electrically functional, gain changed
	15	thinned to 50 μ m	4 sectors characterized pre/post thinning
	18	thinned to 40 μ m	3 sectors characterized pre/post thinning
19 awaiting thinning 4 sectors		awaiting thinning	4 sectors characterized pre thinning

		100	9 99909	and the second
61 01 15 15 15				
	de Colorado	1005/4	01110	901000 901000 91000 11020
				1185
**	DHAN ANELDU	ANELIN .		

4

Ben Hooberman DPF2006

Online Data Sparsification***

Problem

- Current configuration: [1 million pixels/event]×[14 bits/pixel]×[1Hz] = 1.75 Mb/s
- Require $10Hz \rightarrow 17.5$ Mb/s too much

Solution: Data Sparsification

- Seed threshold + form factor cut + cluster shape cut
- Each cluster: 1 long (32 bits) seed pixel index
 + 9 ints (14 bits each) for signals on 3×3 cluster
- [~100 clusters/event]×[(32+9×14) bits/cluster]×[10Hz]
 ≈ 20 kB/s → ~100x reduction!
- Currently on-line \rightarrow on-board FPGA \rightarrow on-chip
- Comparison of data with and without sparsification gives good agreement

Ben Hooberman

DPF2006

Test Beam Facility***

1.5 GeV e⁻ beam

- Test beam-line extracted from booster ring at Advanced Light Source LBNL
- Data synchronized with 1 Hz extraction cycle

Ben Hooberman

DPF2006

2 frames after reset, CDS

Test Facilities for Ladder Studies***

Extensive test facilities

- Environmental chamber (to -70° C): temperature/humidity effects on ladders
- High-res IR temperature probe: thermal properties of ladders
- Laser holography system: spatial distortions with sub-µm resolution
- Capacitive probe: displacements/vibrations
- Composite material lab: fabrication of light structures

Test Results from STAR on Si Flatness

- 50 μm MimosaV chip glued to carrier/cable
- Measure height of chip as function of x, y at LBNL using laser holography
- Variations of 25 μm observed across chip surface
- Use parameterized functions to locate individual pixels

Pair Background Studies***

- 10 BX created with GuineaPig for ILC Nominal beam parameters at 0.5 TeV, 1.0 TeV
- Simulation in Mokka with LDC with CMOS VTX at B = 4T
- Reconstruction of pair background on VTX with Marlin
- Use cut: |cos θ|<0.998</p>
- Simulation of high luminosity background, more detailed study underway

Beam Parameters	Pairs/BX [x 10 ³]	Cut Pairs/BX [x 10 ³]
0.5 TeV Nominal	77±1	17±0.2
1.0 TeV Nominal	143±4	25±0.4

Ben Hooberman DPF2006

Future R&D at LBNL

3 lines of R&D on monolithic pixel sensors

- Implement functionality on-chip for CMOS
 - In-pixel CDS \rightarrow LDRD2 (fast read-out, 6 sectors)
 - On-chip ADC's \rightarrow LDRD3 (5 bits, fast read-out, low power dissipation)
 - On-chip data sparsification
- Fully digital CMOS sensor with time-stamping capability using IBM 0.13 mm triple-well process
- First prototype of active pixels using Oki Silicon On Insulator process

LDRD-2 just arrived

- AMS 0.35 μm CMOS OPTO process from CMP
- ~2×2 mm², 20µm pitch
- 3-T vs. self-bias, $3 \times 3 \ \mu m^2$ vs. $5 \times 5 \ \mu m^2$ diode size

