

R&D of Thinned CMOS Pixel Sensors for the ILC Vertex Tracker

Ben Hooberman

DPF2006

Ben Hooberman1* , Marco Battaglia 1 , Devis Contarato 2 , Kristen Flowers² , Lindsay Glesener¹ , Leo Greiner² , Piero Giubilato 3 , Howard Wieman²

 ¹University of California at Berkeley and Lawrence Berkeley National Laboratory

1

- ²Lawrence Berkeley National Laboratory
- ³Lawrence Berkeley National Laboratory and INFN, Padova

*benhooberman@berkeley.edu special thanks to Robert Foglia, Aptek Industries

Table of Contents

- **The International Linear Collider and the Vertex Tracker**
- **CMOS Pixel Sensors: Principle of Operation**
- **Back-Thinning Studies**
- **A Thinned CMOS Pilot Telescope**
- **The Next Step: Toward a Low Mass Detector Module**
- **Conclusions and Outlook**

The International Linear Collider

■ e⁺e⁻ collider proposed for construction ~2010

- **ILC/LHC complementarity**
- Tunable E_{cm} up to 0.5 TeV, upgradeable to 1.0 TeV Precision physics in TeV regime

The ILC Vertex Tracker

Geometry

- Cylindrical layers (multi-barrel)
- **Ladders of silicon sensors**

Function

- Extrapolate charged particle interaction point (vertex)
- **Primary/secondary particle discrimination**
- b/c/τ tagging, vertex charge determination

Physics Requirements for VTX

- Impact parameter resolution: $[5 \oplus 10/p \sin^{3/2}(\theta)]$ mm
	- \rightarrow Spatial extrapolation resolution: σ < 4 mm
	- → Multiple scattering: $X/X_{\textrm{o}}$ < 0.1% per layer
- High granularity (high background)
- Radiation tolerance, fast readout

Monolithic

Pixel Sensors

Full VTX Simulation and Reconstruction

Validation and Optimization

Mokka + Marlin Simulation vs. 1.5 GeV e - Data

- Relative cluster size as a function of incidence angle
- Validate simulation/reconstruction with beam test data

ears of World-Clas

Science 1021-20

crecer

Mokka + Marlin Simulation

- Determine impact parameter resolution over p_{_T range}
- Determine performance for various sensor designs/detector configurations

Ben Hooberman DPF2006

 $\overline{}$

CMOS Pixel Sensors

Principle of Operation

- Ionizing particle generates electron-hole pairs in silicon
- Electrons \rightarrow collection diodes via thermal diffusion (no applied E-field)

Structure: 3 integrated layers

- \sim 10 µm electronics layer: read-out and logic/data processing
- 10-20 µm epi-layer: P-type sensitive volume, low resistivity, undepleted
- 300-500 µm bulk SI: structural support/substrate

Advantages of CMOS:

- **Integration of readout/logic electronics on single substrate**
- Small feature size allows pixels of small pitch
- **Widely available, cheap commercial process**
- CMOS R&D @ LBL supported by 3-year LDRD grant

Back-Thinning: Motivation and Strategy

- \blacksquare Vertex Tracker at ILC requires 0.1% X $_{_0}$ / layer (< 50 µm Si)
- CMOS Sensors: sensitive layer thickness $10 20$ µm and \sim 400 µm bulk Si
- Perform back-thinning: remove majority of bulk Si by mechanical grind process
- Aptek Industries capable of grinding single chip to minimum thickness 25 µm
- Strategy: characterize individual diced chip before and after thinning to study effects on charge collection
- Some degradation observed in earlier studies with back-thinned CMOS sensors
- Goal: demonstrate CMOS sensors can be thinned without sacrifice in performance

The MimosaV Prototype Chip

- produced at IPHC, Strasbourg 0.6 µm AMS CMOS
- \bullet > 1 million pixels, 1.7 x 1.7 cm² active area (large)
- 14 µm epi-layer, 17 µm pixel pitch, 450 µm thick
- 4 independent sectors of 512 x 512 pixels
- analog output

Characterization Procedure

Step 1: Characterization

- Use 5.9 keV peak in ⁵⁵Fe spectrum to measure charge-to-voltage conversion gain
- Probe charge generation in epitaxial layer with 850 nm laser
- 1.5 GeV e test beam at Advanced Light Source at LBNL

Step 2: Back-Thinning

- Chip is mounted to grinding plates, wet grind process
- Achieve arbitrary thickness down to 25 µm with flat back surface

Step 3: Re-characterization

Repeat testing procedure and compare with prior results

Results for Thinning to 50 µm

- Fit gaussian to 5.9 keV peak pre/post-thinning to measure change in gain
- Results for multiple sectors of 1 chip: [7±8]% decrease in mean of Gaussian best-fit
- **No significant change in gain observed**

- Fit Landau function to 1.5 GeV e- spectrum to measure change in collected charge
- Results for multiple sectors of 1 chip: [9±7]% decrease in MPV collected charge
- **No significant change in collected charge**

Results for Thinning to 40 µm

- Fit gaussian to 5.9 keV peak pre/post-thinning to measure change in gain
- Results for multiple sectors of 1 chip: [2±2]% decrease in mean of Gaussian best-fit
- **No significant change in gain observed**

- Fit Landau function to 1.5 GeV e- spectrum to measure change in collected charge
- Results for multiple sectors of 1 chip: [2±4]% increase in MPV collected charge
- **No significant change in collected charge**

850 nm Laser Results

- Results for multiple sectors of 1 chip: [16±6]% decrease in collected charge
- **Some evidence of signal loss**

- Results for multiple sectors of 1 chip: [10±6]% decrease in collected charge
- **Some evidence of signal loss**

Summary of Results

Results equal (R $_{\rm after}$ - R $_{\rm before}$)/R $_{\rm before}$ x 100%, refer to multiple sectors of CMOS sensor

- **Slight increase in single pixel noise**
- Charge-to-voltage conversion gain not significantly affected
- Some signal loss for 850 nm lasers
- Total charge collected for 1.5 GeV e⁻ not significantly affected
- **No change in cluster S/N at 1.5 GeV e - beam detected**

Encouraging results for prospects of CMOS VTX at ILC!

A Thinned Pixel Pilot Telescope (TPPT)

Background

- Build working prototype capable of tracking particles
- Multiple CMOS sensor planes and detector under test (DUT)
- Use ALS 1.5 GeV e test beam

Motivation

- Proof of principle of thin CMOS capable of tracking in realistic environment
- Study tracking with tunable track multiplicity, adjustable to expected ILC multiplicity
- Use telescope planes to extrapolate particle position on $DUT \rightarrow$ measure impact parameter resolution
- Characterize new sensors

Telescope Simulation Effort

Simulation

- GEANT4 generation/simulation + Marlin reconstruction
- Full pattern recognition and track-fitting
- Same reconstruction environment as for ILC VTX \rightarrow validate sim/reco with real data

Sources of Error

- Spatial resolution of sensors
- Extrapolation error
- Multiple scattering

Real data: additional alignment and flatness error

TPPT Mokka + Marlin Simulation

Ben Hooberman DPF2006

Telescope Experimental Setup

Data Acquisition and Analysis

- Labview: pedestal subtract, noise, CDS, on-line data sparsification
- Marlin: off-line reconstruction/analysis

Configuration

- 3 planes of thin Mimosa V sensors $(40 \mu m, 50 \mu m, 50 \mu m) + DUT$
- Spacing \sim 17 mm, T = 27 $\mathrm{^{\circ}C}$
- **1.5 GeV e test beam at ALS**

Readout

- Custom board (FPGA, 14-bits ADC's)
- Synchronized with 1 Hz extraction cycle
- 2 frames after reset, CDS
- **1** sector/layer (>10 6 pixels/event)

Preliminary Telescope Results

Toward a Low Mass Ladder Detector Module

- Template provided by STAR group @ LBL (**S**olenoidal **T**racker **a**t **R**HIC)
	- ➔ QGP experiment at Brookhaven
	- → Heavy Flavor Tagger identifies low p_⊤ secondary particles from charm production in heavy ion collisions→requires ultra-low material budget to minimize multiple scattering
- STAR has chosen thin CMOS on light-weight ladders \rightarrow achieved lowest material budget ladder structures to date. Use STAR as template, further reduce material budget.

The STAR Detector Module

ears of World-Clas

Science

crecer

3 Components integrated in module

- Sensor: thin CMOS
- Cable: data transfer, clock/control, power, ground
- Carrier: RVC/carbon fiber

- Detector is **< 20%** of module thickness
- STAR has achieved **< 0.3% X 0 / layer**
- **ILC VTX requires factor ~3x thinner**

ILC Ladder Studies Underway

Funding approved for LCRD project

- STAR ladder \rightarrow prototype meeting ILC requirements
- Reduce material budget of support carrier, eliminate cabling using chip stitching
- Characterize mechanical deformation due to thermal effects from power cycling

Current Design

- Support: beryllium sandwiched around carbon fiber
- Finite Element Analysis (FEA) underway, prototyping next year
- Outlook: integrate thin CMOS chips, test module using telescope at 1.5 GeV e beam

Conclusions and Outlook

- **Successful thinning of CMOS sensors to** ≤**50** µ**m demonstrated with no appreciable performance loss**
- **Beam telescope with thin CMOS sensors designed, built and commissioned at ALS 1.5 GeV e- test beam**
- **Recently approved LCRD funds for vertex ladder engineering, studies underway**
- **Characterize ladders with pixel telescope**
- **(generation** → **simulation** → **reconstruction) full software chain complete, use in future R&D effort**

Previous Back-Thinning Studies***

24

- Compare beam test data with Bichsel simulation assuming 8 um epi-layer
- Indication of significant signal from bulk silicon

ears of World-Clas

Science 1021-20

rrrrrr

STAR SUCIMA

- Compare beam test data pre/post thinning to 15 µm (use epi-layer as etch stop)
- Significant signal loss: less reflection at epi-substrate boundary?

Ben Hooberman DPF2006

Experimental Setup***

Chip is mounted to mezzanine card, mezzanine card is mounted to motherboard

MimosaV Prototype Chip

- produced at IPHC Strasbourg w/ 0.6 µm AMS CMOS process
- \bullet > 1 million pixels, 1.7 x 1.7 cm² active area (large)
- 14 µm epitaxial layer, 17 µm pixel pitch, 450 µm thick
- 4 independent sectors of 512 x 512 pixels, analog output

Motherboad

- custom board produced at LBNL
- Programmable Xilinx FPGA

Ben Hooberman

DPF2006

On-board 14-bit ADC's

Characterization Tools***

- When 5.9 keV X-ray from 55 Fe converts in shallow depletion region nearly 100% of generated charge reaches collection diode.
- \bullet 5.9 keV / 3.6 eV average ionization energy = 1640 electrons/ X-ray
- 1640 electrons / 207 counts gives calibration of ~8 electrons/ADC count

- **Penetration depth of photons in silicon is** strongly dependent on wavelength in range 850- 1300 nm
- \blacksquare 850 nm: ~10 µm depth probes only epitaxial layer
- \blacksquare 1060 nm: ~1000 µm depth allows photon to pass through entire detector

Back-Thinning Procedure***

Step 1: Attach chip to mezzanine card with removable WaferGrip adhesive (characterize)

Step 2: Remove glue by placing in heated solven

Step 3: Back-thinning

 Step 4: Re-attach chip to mezzanine card with permanent glue (re-characterize)

1 2 3 4

Ben Hooberman DPF2006

Online Data Sparsification***

Problem

- Current configuration: [1 million pixels/event]×[14 bits/pixel]×[1Hz] = 1.75 Mb/s
- Require 10Hz → **17.5 Mb/s too much**

Solution: Data Sparsification

- Seed threshold $+$ form factor cut $+$ cluster shape cut
- Each cluster: 1 long (32 bits) seed pixel index + 9 ints (14 bits each) for signals on 3×3 cluster
- [~100 clusters/event]×[(32+9×14) bits/cluster]×[10Hz] ≈ **20 kB/s** → **~100x reduction!**
- **Currently on-line** \rightarrow **on-board FPGA** \rightarrow **on-chip**
- Comparison of data with and without sparsification gives good agreement

Ben Hooberman

DPF2006

Test Beam Facility***

1.5 GeV e - beam

- **Test beam-line extracted from booster ring at** Advanced Light Source LBNL
- Data synchronized with 1 Hz extraction cycle

Ben Hooberman

DPF2006

■ 2 frames after reset, CDS

Test Facilities for Ladder Studies***

Extensive test facilities

- Environmental chamber (to -70º C): temperature/humidity effects on ladders
- High-res IR temperature probe: thermal properties of ladders
- Laser holography system: spatial distortions with sub-µm resolution
- Capacitive probe: displacements/vibrations
- Composite material lab: fabrication of light structures

Test Results from STAR on Si Flatness

- 50 µm MimosaV chip glued to carrier/cable
- Measure height of chip as function of x, y at LBNL using laser holography
- Variations of 25 um observed across chip surface
- Use parameterized functions to locate individual pixels

Pair Background Studies***

- 10 BX created with Guinea Pig for ILC Nominal beam parameters at 0.5 TeV, 1.0 TeV
- Simulation in Mokka with LDC with CMOS VTX at $B = 4T$
- Reconstruction of pair background on VTX with Marlin
- Use cut: $|\cos \theta|$ < 0.998

ears of World-Clas

Science

crecer

 Simulation of high luminosity background, more detailed study underway

Future R&D at LBNL

3 lines of R&D on monolithic pixel sensors

- Implement functionality on-chip for CMOS
	- In-pixel CDS \rightarrow LDRD2 (fast read-out, 6 sectors)
	- On-chip ADC's \rightarrow LDRD3 (5 bits, fast read-out, low power dissipation)
	- On-chip data sparsification
- Fully digital CMOS sensor with time-stamping capability using IBM 0.13 mm triple-well process
- First prototype of active pixels using Oki **S**ilicon **O**n **I**nsulator process

LDRD-2 just arrived

- AMS 0.35 µm CMOS OPTO process from CMP
- \blacksquare ~2 \times 2 mm², 20 \upmu m \downarrow pitch
- $\textsf{\textbf{I}}$ 3-T vs. self-bias, 3 \times 3 μ m 2 vs. 5 \times 5 μ m 2 diode size

