

Helicity of W bosons in Top Quark Decays at CDF

Shulamit Moed, University of Geneva On behalf of the CDF collaboration

DPF 29/10-03/11/2006, Hawaii

Outline:

- Introduction
- Motivation
- 1D measurement of W helicity fractions with 955pb⁻¹ of data
- 2D measurement of W helicity fractions with 955pb-1 of data
- Summary

Top Production at the Tevatron

p-pbar collisions with 1.96TeV

center-of-mass energy.

 $\sigma_{t\bar{t}} = 6.7 \pm 0.8 \, pb$

2

Until LHC turns on - the only place to study top quark

(theory)

Top pair production

Main mechanism for top physics at Tevatron

t-tbar Final States

 $\tau \sim 10^{-25}$ s (due to large mass)

 $V_{tb} \sim 1; M_{top} > M_W + M_b:$ Decays to real W BR(t \rightarrow Wb) ~ 100%

Final states are classified by the decay of the W's $BR(W \rightarrow I_V) = 1/3$ $BR(W \rightarrow qq) = 2/3$ In all cases, the final state has 2 b quarks

The CDF detector

W helicity in top quark decays

SM top decays via the weak interaction \rightarrow V-A coupling like all other fermions:

Helicity:
$$H = \vec{J} \cdot \vec{P}$$

$$\frac{ig}{2\sqrt{2}}\bar{t}\gamma^{\mu}(1-\gamma^{5})V_{tb}bW_{\mu}$$
b
spin=1/2
t
spin=1/2
W

spin=1

The longitudinal fraction:

 $f_0 = \frac{\Gamma(W_0)}{\Gamma(W_0) + \Gamma(W_L) + \Gamma(W_R)}$ $f_0 \approx \frac{m_t^2}{2m_w^2 + m_t^2}$

This measurement:

- Test of the SM, non-zero V+A?
- EWSB prediction of high longitudinal W fraction

What do we measure ?

Snulamit Moed

cos 0

Iepton+jets selection

- fully reconstruct the leptonic top decay using a kinematical fit and boost the charged lepton and the top into the W rest frame.
- calculate cos(θ*)
- construct templates for left-handed, right handed and longitudinal W's and background
- fit helicity fractions using unbinned likelihood fitter.
- correct for acceptance effects.
- estimate systematic uncertainties.

Selection main features:

- only one isolated lepton with $P_T > 20 \text{ GeV}$
- at least 4 jets with $E_T > 15$ GeV and $|\eta| < 2.0$ (JETCLU with $\Delta R=0.4$)
- scale jet energy to correct for both physics and detector effects
- missing E_T > 20 GeV
- at least one jet is tagged with a secondary vertex tagging
- veto on electrons from photon conversion
- veto on events tagged by cosmic ray tagger
- scalar sum of transverse energies of all reconstructed objects (Ht)
 > 200 GeV
- use kinematic fitter and choose combination with lowest x²

Selected Data Sample

220 events (89% signal fraction)

Total background 22.8 events

Scaled to 955pb⁻¹

Background composition

Process		bkg	events
		fraction	fraction
Mistag	9±1.35	39.5%	4.1%
W+h.f.	6.4±1.85	28%	2.9%
Single top	0.54±0.17	2.4%	0.25%
Diboson	1.36±0.07	6%	0.61%
QCD	5.5±1.08	24.1%	2.5%

The Likelihood

Used unbinned likelihood fitter to extract helicity fractions:

Acceptance Correction

F_0 = measured fraction ; f_0 = true fraction

$$R = \frac{Acc.(left - handed)}{Acc.(longitudinal)} = \frac{\alpha_{-}}{\alpha_{0}}$$

$$correction = \frac{F_{0} \cdot (R - 1) \cdot (1 - F_{0})}{1 + F_{0}(R - 1)}$$

$$F_{0} = \frac{f_{0}}{R - f_{0} \cdot (R - 1)}$$

 $\alpha_{i} = \text{acceptance for helicity i}$ $F_{0} = \frac{\alpha_{0} f_{0}}{\alpha_{+} f_{+} + \alpha_{0} f_{0} + \alpha_{-} f_{-}}$

for the right-handed fraction: Correction for f+ is very small (~ 0.01) \rightarrow not applied. Instead – assign a 1% systematic.

12

Systematic Uncertainties

We use realistic pseudo experiments to estimate systematic uncertainties while keeping the fit unchanged.

Source	δf ₀	δf ₊		
Bkg model	±0.038	±0.017		
JES	±0.013	±0.010		
Signal model	±0.020	±0.010		
PDF	±0.009	±0.006		
ISR/FSR	±0.010	±0.005		
MC statistics	±0.020	±0.010		
Instantaneous luminosity	±0.007	±0.002		
Lepton energy scale	±0.001	±0.002		
Acceptance correction	±0.001	± 0.001		
Total syst.	±0.053	±0.027		
Expected stat. uncertaint	y ±0.12	± 0.06		
Shulamit Moed				

Fitting the data:

 $F_0 = 0.65$ (measured)

- $f_0 = 0.60 \pm 0.12 \pm 0.06$, (corrected) $f_+ = 0$ fixed
- $f_{+} = -0.06 \pm 0.06 \pm 0.03$,

f₀ fixed to SM value

@Mt=175 GeV

Entries Entries CDF II Preliminary 220 CDF II Preliminary 220 background background 40 40 +left-handed +right-handed +longitudinal +left-handed 35 35 data 955 pb +longitud in al 30 30 data 955 pb 25 25 events/0.2 vents/0.2 20 20 15 15 10 10 0 -0.8 -0.6 -0.4 -0.2 0.2 -0.8 -0.6 0.4 0.6 0.8 0.2 0.4 0.8 COSA COSA

Shulamit Moed

Fit for longitudinal fraction

Fit for right-handed fraction

- Bayesian method for setting a limit@95% C.L:
- Model systematic uncertainties as a gaussian with $\mu {=}$ 0, $\sigma {=}$ 0.027 .
 - Have verified \mathbf{f}_+ systematic independent of \mathbf{f}_+
- Convolute with likelihood
 - as expected the effect is small, dominated by statistics.

Expected Statistical Uncertainty

Assuming no improvements, stat~syst with 4fb⁻¹.

With the increasing luminosity:

- Interest in a model independent measurement
- V+A coupling bounded by CLEO $b \rightarrow s\gamma$ data at a level that cannot be reached even at the LHC.
- No assumption on helicity fractions while fitting, probe any deviation from SM (super-symmetry, dynamical electroweak symmetry breaking models, Extra dimensions)

★ Same data, same reconstruction, same templates etc. 🛛 ★

fit for f_0 and f_+ simultaneously, rather than:

- Fixing f₊ to 0 (=SM) and fitting for f₀
- Fixing f₀ to 0.7 (=SM) and fitting for f₊

---> Less precision, but a more general result

Uncertainties for Simultaneous Fit

2D Fit Results

 $f_0 = 0.74 \pm 0.25(stat) \pm 0.06(syst)$ $f_+ = -0.06 \pm 0.10(stat) \pm 0.03(syst)$ Shulamit Moed

- Form probability surface
- Find contour of constant probability that captures 95% of the volume under the surface
- No systematics in likelihood shape.
 but for 2D fit: stat

 syst = stat

Improvement of CDF 1D results of longitudinal and right handed W fractions.

- First simultaneous measurement of right-handed and longitudinal W helicity fractions!
- Our knowledge of *t-W-b* vertex is still statistically limited.
- CDF now factor of 2 better than previous measurements.
- However still factor of 2 above current systematics -This is worth doing as a 4 fb-1 analysis on CDF. When our errors are dominated by systematics and as long as LHC does not have sys. uncertainties <~10%, the Tevatron results will be hard to beat!
- Measurement consistent with SM predictions top decay is of V-A nature.
- > Other CDF measurements using M_{lb} method and cos(θ*) have been performed and results agree with SM predictions.
- winter plans improve method and use more data, combine measurements and publish results.

Back up slides

- Top mass is not constrained in this analysis.
- Fit to a linear function yields a correction of 0.5% for a 1σ variation of the top mass (3 GeV).

Systematic Uncertainties – Background

1.4

1.2

 background - Wbb

-W4p -ww

---- OCD

Background shape systematic:

- Assume 100% W4p or 100% Wbb2p
- Add 25% special QCD sample

Vary q2 for W sample

Special QCD sample Multijet trigger 0.8<em<0.95 Ntracks>3

Background Dominated Samples

Comparison of 0-tag sample and bkg model

• We have a reasonable background model

Systematic Uncertainties – MC Statistics

Statistical uncertainty of the parameterizations is not propagated through the analysis \rightarrow systematic uncertainty:

- Re-fitting templates 1000 times, Poisson fluctuate the bins around central value.
- Draw pseudo-experiments from the different fits.
- Take difference in RMS of fitted values as a systematic :

Systematic Uncertainties - PDF

- difference between MRST72 and CTEQ5L.
- difference between MRST75 and MRST72.
- variation of the 20 CTEQ6M eigenvectors.

$$\Delta F = \frac{1}{2} \left(\sum_{i=1}^{20} \left[F(S_i^+) - F(S_i^-) \right]^2 \right)^{\frac{1}{2}}$$

2D Pull Distributions

955pb⁻¹ – Data/MC Comparison

b-jet Et

lepton Pt

number of jets

955pb-1 – Data/MC Comparison

jet1 Et

jet2 Et

For right-handed fraction

For longitudinal fraction

b-jet Tagging

• Expect $\mathbf{t} \rightarrow \mathbf{W} \mathbf{b}$

b jet tagging is a very important tool.

- Every ttbar event contains 2 b-jets
- Less than 20% of the dominant background (W+jets) contains Heavy Flavor (b/c quarks)
- B decay signature: displaced vertex
- Long life time cτ ~ 450 μm: travels
 L_{xy}~3mm before decaying

Close-up View of Layer 00 Silicon Detector

Require at least 1 jet tagged with the secondary vertex tagging algorithm.

Jet Energy Scale

Corrections applied to estimate the original parton energies from the observed jet energy in the calorimeter

Jets are corrected for:

 η dependence correction – homogenous calorimeter response.

 subtraction of energy due to pile-up of multiple interactions in the same bunch crossing.

 correction for non-linearity and energy loss in the uninstrumented regions of the detectors.

 Underlying event energy that falls inside the jet cone.

Jet energy radiating out of the jet cone.

 Top specific corrections – flavor and topology of ttbar events.

Other W Helicity Measurements

Previously at CDF

RunI $(M_{lb})^2$:

ulannic moeu

COSθ^{*} (T. Chwalek, D. Hirschbuehl, T. Muller, J. Wagner, W. Wagner) - **results**

longitudinal fraction

right-handed fraction

