

Search for Heavy Top at CDF

Andrew Ivanov UC Davis CDF Collaboration

DPF+JPS Meeting October 29 – November 3, 2006

Tevatron and CDF detector

- $\sim 1.4 \, \text{fb}^{-1}$ delivered
- Expect to collect 6-8 fb⁻¹ by 2009
- New heavy particle discovery reach up to masses of ~ 1 TeV
- This analysis uses 760 pb⁻¹

Theoretical Motivations

- Heavy Top appears in many theories
- Usually too heavy for Tevatron
 - \square e.g. Little Higgs (heavy Top with mass ~1–2 TeV)
 - hep-ph/0310039,0402037,0520225)
- Possible 4-th generation quark with mass of few hundreds GeV
 - Consistent with EWK data
 - Oblique corrections drive Higgs Mass to ~ 500 GeV
 - (C.He et al, hep-ph/0102144)
 - Almost degenerate b' and t' masses: M(t') M(b') < M(W)</p>
 - Decays as top! t´ -> Wq (q=d,c,b)
- New mirror quarks with not necessarily same properties as first three generations
 - "Beautiful Mirrors": new heavy quarks decaying into Wb
 - Motivated by data
 - (C. Wagner, hep-ph/0109097)

EWK precision data

	Measurement	Fit	IO ^{meas} –O ^{fit} I/o ^{meas} 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02766	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _z [GeV]	2.4952 ± 0.0023	2.4957	•
σ_{had}^{0} [nb]	41.540 ± 0.037	41.477	
R _i	20.767 ± 0.025	20.744	
A ^{0,I} fb	0.01714 ± 0.00095	0.01640	
A _I (P _τ)	0.1465 ± 0.0032	0.1479	
R _b	0.21629 ± 0.00066	0.21585	
R _c	0.1721 ± 0.0030	0.1722	
A ^{0,b}	0.0992 ± 0.0016	0.1037	
A ^{0,c}	0.0707 ± 0.0035	0.0741	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1479	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.392 ± 0.029	80.371	
Γ _w [GeV]	2.147 ± 0.060	2.091	
m _t [GeV]	171.4 ± 2.1	171.7	
			0 1 2 3

- Precision data is not consistent with SM!
- A_{FB}^{b-}b-quark forwardbackward assymetry ~2.9 σ away
- Not a big deal?
- sin θ_w leptonic is ~3.6 σ away from sin θ_w hadronic
- Suppose A_{FB}^b measurement has larger uncertainty or systematically off, and we force:

 $\sin \theta_{W, had} = \sin \theta_{W, lep}$

Oct-31-06

Higgs Mass fit

Beautiful mirror quarks

- New physics in Z->bb? Different coupling of the b-quark to Z?
 (C. Wagner, hep-ph/0109097)
- Mirror quarks of b-quarks improve the fit
 - couple to b's and less to d's or c's
- Two scenarios: with and without top mirror quarks

t' Decay and Event Selection

Decays as top only heavier!

Analysis Strategy

- Main backgrounds: W+jets and ttbar
- Others: QCD, EWK (WZ,WW,Z+jets,single top) ~ 8%
- Assume top mass = 175 GeV and constrain ttbar(Pythia) to theoretical cross section 6.7+- 0.9 pb
- Allow W+jets normalization float freely and perform kinematic fit
- Use the following kinematic quantities

1.
$$H_T = \sum E_{T, jets} + E_{T, lepton} + E_T$$

2. M_{reco} – reconstructed mass as in Top Mass Fitter:

$$\begin{split} \chi^2 &= \Sigma_{i=\ell,4jets} \frac{(p_T^{i,fit} - p_T^{i,meas})^2}{\sigma_i} + \Sigma_{j=x,y} \frac{(p_j^{UE,fit} - p_j^{UE,meas})^2}{\sigma_j} \\ &+ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{\ell\nu} - M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj} - M_t)^2}{\Gamma_t^2} + \frac{(M_{b\ell\nu} - M_t)^2}{\Gamma_t^2} \end{split}$$

Oct-31-06

DPF 06 – A. Ivanov

Analysis Strategy (cont.)

observed

- Quasi model-independent variables retain sensitivity to other possible beyond SM events
- Perform a binned Likelihood Fit
- Scan Likelihood as a function of t ´ cross section
- Include systematic effects as nuisance parameters (ott, Luminosity, lepton ID efficiencies, MC/data scale factors, Jet Energy Scale, Q2 scale, initial/final state radiation, PDF)
- Maximize Likelihood with respect to all them profiling method

 $L(\sigma_{i'}) = \prod_{i} P(n_i' \mid \mu_i)$

$$\mu_i = \sum_j L_j \sigma_j \varepsilon_{ij}$$

Oct-31-06

Handling Systematics

$$\mathcal{L}(\sigma_{t'}|n_i) = \prod_{i,k} P(n_i|\mu_i) \times G(\nu_k|\tilde{\nu}_k, \sigma_{\nu_k})$$

- The shifts measured by drawing "pseudo-experiments" from shifted templates and fitted to nominal

Jet Energy Scale (JES):

- □ Obtain JES +-1σ shifted templates by shifting JES upward and downward
- Include the shape transformation due to variation of V_{JES} into the fit

Systematic Effects

Oct-31-06

Looking at the data: 95% CL Limits

- Theory curve from
 - Bonciani et al.
 hep-ph/9801375
 - Mangano et al.
 hep-ph/0303085
- Expected limits obtained using pseudo-data
- Exclude with 95%CL region of t´ masses below 258 GeV

Data Fit for m $_{t'}$ =350 / 400 GeV

500

Significance of an Excess

Event Displays of 4 events at the high Mass tail

Final Remarks

- The analysis is based on 760 pb-1of integrated luminosity
- CDF is currently analyzing 1.2 fb-1 of data
- See new results at winter conferences

Backup Slides

Results

Mass (GeV)	Expected Limit (pb)	Actual Limit (pb)
175	2.93 ± ^{1.05} 0.66	4.86
200	1.70 ± 0.57 0.44	2.36
225	0.92 ± ^{0.40} _{0.27}	1.01
250	0.54 ± ^{0.24} _{0.14}	0.68
275	0.40 ± 0.15 _{0.12}	0.64
300	0.28 ± 0.12 0.08	0.54
350	0.18 ± 0.07 0.05	0.50
400	$0.13 \pm 0.06_{0.04}$	0.46