Heavy Quark-Diquark Symmetry and χPT for Doubly Heavy Baryons

Thomas Mehen, Duke University

DPF 2006, 10/30/2006, Honolulu, Hawaii

- S. Fleming & T.M., PRD 73, 034502 (2006)
- J. Hu & T.M., PRD 73, 054003 (2006)
- T.M. & B. Tiburzi, PRD 74, 054505 (2006)

Outline

Motivation

Experiment: SELEX $\Xi_{cc}^+, \Xi_{cc}^{++}$ candidates

Theory: Heavy Quark-Diquark Symmetry $\ \bar{Q} \bar{Q} \bar{q} \leftrightarrow Q \bar{q}$

Savage, Wise

Diquark Effective actions from vNRQCD

S. Fleming, T.M., PRD 73, 034502 (2006)

 $Q\bar{Q},QQ$ bound states characterized by several scales:

$$m_Q$$
, $p \sim m_Q v$, $E \sim m_Q v^2$, $\Lambda_{\rm QCD}$

HQET: expansion in $\Lambda_{\rm QCD}/m_Q \ m_Q v, m_Q v^2$ missing

Heavy $Q\bar{Q},QQ$ systems require NonRelativistic QCD

Chiral Lagrangians with Quark-Diquark Symmetry

J. Hu, T.M., PRD 73, 054003 (2006)

NEW symmetry predictions for $\ \Xi_{cc}^* \to \Xi_{cc} + \gamma$

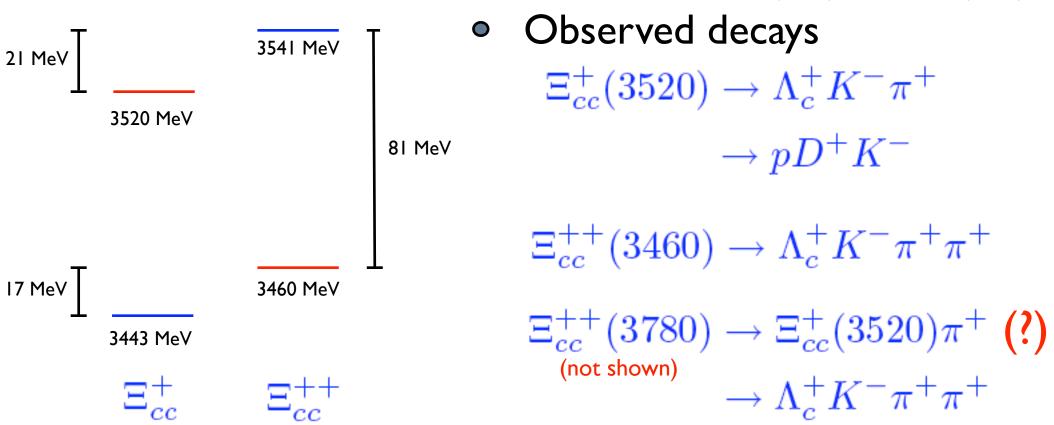
em, strong decays of excited doubly heavy baryons

Quenched and Partially Quenched Theories

T.M., B. Tiburzi, PRD 74, 054505 (2006)

nonanalytic chiral corrections for lattice simulations

doubly heavy masses, hyperfine splittings


Q-DQ hyperfine prediction: small corrections!

em decays, including $1/m_Q$ corrections

Outlook

SELEX Doubly Charm Baryons?

PRL 89, I I 200 I (2002), PLB 628, I 8 (2004)

- high statistical significance, few events (~10-30)
- search by BELLE fails to confirm $\Xi_{cc}^+(3520)$ (hep-ex/0606051)

Masses, hyperfine consistent with quark model, lattice

hyperfine splitting ~ 80 MeV

Lewis, Mathur, Woloshyn; Flynn, Mescia, Tariq

Puzzling Aspects of SELEX Observation

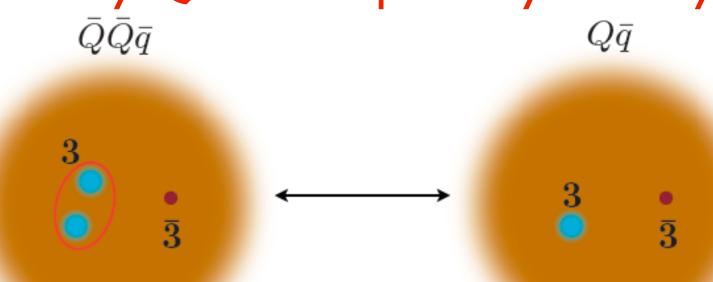
Isospin splitting ~ 20 MeV ?

larger than expected

radiative decays should dominate weak decay

$$\Xi_{cc}^+(3520)$$
 excited state? $\Xi_{cc}^* \to \Xi_{cc} + \gamma$?

Weak lifetimes


Guberina, et. al. EPJ C9, 213 (1999)

experiment: < 33 fs theory (HQET+OPE): ~100 fs

Production cross sections (Kiselev, Likhoded, hep-ph/0208231)
 significantly larger than expected from LO pQCD

forward production $\langle x_F \rangle \sim 0.3$ seen in p, Σ not π beams nonperturbative mechanisms (e.g. intrinsic charm, leading particle effect)?

Heavy Quark-Diquark Symmetry

HQET-like Lagrangian for Heavy Diquarks

(Savage, Wise)

$$\mathcal{L} = h^{\dagger} i D_0 h + \vec{\mathbf{T}}^{\dagger} \cdot i D_0 \vec{\mathbf{T}} + \frac{g_s}{2m_Q} h^{\dagger} \vec{\boldsymbol{\sigma}} \cdot \vec{\mathbf{B}} h + \frac{i g_s}{2m_Q} \vec{\mathbf{T}}^{\dagger} \cdot \vec{\mathbf{B}} \times \vec{\mathbf{T}} + \dots$$

• At lowest order, U(5) symmetry acting on (h, \vec{T})

Hyperfine splittings:
$$m_{\Xi^*} - m_{\Xi} = \frac{3}{4}(m_{H^*} - m_H)$$

Hyperfine splittings in quark model

$$\begin{array}{rcl} H_{Q\bar{q}} & = & \ldots + \frac{\lambda}{m_Q m_q} \vec{S}_Q \cdot \vec{S}_{\bar{q}} \\ \\ H_{\bar{Q}\bar{Q}\bar{q}} & = & \ldots + \frac{1}{2} \frac{\lambda}{m_Q m_q} \sum_{\bar{O}} \vec{S}_{\bar{Q}} \cdot \vec{S}_{\bar{q}} \end{array}$$

- $\frac{1}{2}$ color SU(3) factor: $\bar{Q}\bar{q}$ in $\bar{3}$ vs. $Q\bar{q}$ in 1
- Prediction for doubly charm baryons

$$m_{\Xi_{cc}^*} - m_{\Xi_{cc}} \approx \frac{3}{4} (m_{D^*} - m_D) = 106 \,\text{MeV}$$

$$ullet$$
 Error? $O\left(rac{\Lambda_{
m QCD}}{m_c}
ight) \sim rac{1}{3}$ 106 MeV vs. 80 MeV ??

Heavy $Q\bar{Q}, \bar{Q}\bar{Q}$ Systems: NonRelativistic QCD (NRQCD)

•vNRQCD: separate k into $O(m_Q v)$ and $O(m_Q v^2)$ parts

$$\vec{k} = \vec{p} + \vec{k}'$$
 $h_v = \sum_{\vec{p}} e^{-i\vec{p}\cdot\vec{x}} \psi_{\vec{p}}$ $D_{\mu}\psi_{\vec{p}} = O(m_Q v^2) \psi_{\vec{p}}$

vNRQCD Lagrangian

(Luke, Manohar, Rothstein)

$$\mathcal{L} = \sum_{\mathbf{p}} \chi_{\mathbf{p}}^{\dagger} \left(iD^{0} - \frac{(\mathbf{p} - i\mathbf{D})^{2}}{2m_{Q}} + \frac{g}{2m_{Q}} \boldsymbol{\sigma} \cdot \mathbf{B} \right) \chi_{\mathbf{p}}$$
$$-\frac{1}{2} \sum_{\mathbf{p},\mathbf{q}} \frac{g_{s}^{2}}{(\mathbf{p} - \mathbf{q})^{2}} \chi_{\mathbf{q}}^{\dagger} \bar{T}^{A} \chi_{\mathbf{p}} \chi_{-\mathbf{q}}^{\dagger} \bar{T}^{A} \chi_{-\mathbf{p}} + \dots$$

- ullet Power counting: $ec{p} \sim m_Q v \quad \psi_{ec{p}}, \chi_{ec{p}} \sim (m_Q v)^{3/2}$
 - $D_0, \vec{D} \sim m_Q v^2$ (usoft gluons) $A^\mu \sim m_Q v^2$ (soft) $A^\mu_{\vec{p}} \sim m_Q v$
- HQET + $\bar{Q}\bar{Q}\bar{Q}\bar{Q}$ Operators, different power counting

Effective Action for Heavy Diquarks

S. Fleming, T.M., PRD 73, 034502 (2006)

- ullet composite diquark field $\mathbf{T}^i_{\mathbf{r}} = \sum_{\mathbf{p}} e^{i\mathbf{p}\cdot\mathbf{r}} \frac{1}{2} \epsilon^{ijk} (\chi_{-\mathbf{p}})_j \epsilon \sigma(\chi_{\mathbf{p}})_k$
- ullet Hubbard-Stratonovich trans., integrate out χ_p

$$\mathcal{L}_{\mathbf{T}} = \int d^{3}\mathbf{r} \, \mathbf{T}_{\mathbf{r}}^{\dagger} \left(iD_{0} + \frac{\boldsymbol{\nabla}_{\mathbf{r}}^{2}}{m_{Q}} - V^{(3)}(r) \right) \mathbf{T}_{\mathbf{r}} + \frac{g}{2m_{Q}} \int d^{3}\mathbf{r} \, i \, \mathbf{T}_{\mathbf{r}}^{\dagger} \cdot \mathbf{B} \times \mathbf{T}_{\mathbf{r}}$$

$$= \sum_{n} \mathbf{T}_{n}^{\dagger} (iD_{0} + \delta_{n}) \mathbf{T}_{n} + \frac{g}{2m_{Q}} i \sum_{n} \mathbf{T}_{n}^{\dagger} \cdot \mathbf{B} \times \mathbf{T}_{n}$$

$$\mathbf{T}_{n}^{\dagger} \cdot \mathbf{D}_{n}^{\dagger} \cdot \mathbf{T}_{n}^{\dagger} \cdot \mathbf{D}_{n}^{\dagger} \cdot \mathbf{D}$$

$$\mathbf{T}_{\mathbf{r}}^{i} = \sum_{n} \mathbf{T}_{n}^{i} \phi_{n}(\mathbf{r}) \qquad \left(-\frac{\boldsymbol{\nabla}_{\mathbf{r}}^{2}}{m_{Q}} + V^{(3)}(r) \right) \phi_{n}(\mathbf{r}) = -\delta_{n} \phi_{n}(\mathbf{r})$$

 Savage-Wise Lagrangian obtained after integrating out all excited diquark fields

Chiral Lagrangian with Heavy Quark-Diquark Symmetry J. Hu, T.M., PRD 73, 054003 (2006)

Heavy Hadron Chiral Perturbation Theory

(Wise; Burdman, Donoghue, Yan, et. al.)

Heavy Meson Fields combine 0 and I heavy mesons in single field

$$H_a = (Q\bar{q}_a) = \left(\frac{1+\psi}{2}\right)(P_a^{*\mu}\gamma_\mu - \gamma_5 P_a)$$

• Goldstone Bosons (π, K, η) $SU(3)_L \times SU(3)_R \to SU_{L+R}(3)$

$$\xi = e^{i\Pi/f} \qquad \qquad \Sigma = \xi^2$$

$$D^{\mu}_{ab} = \delta_{ab}\,\partial^{\mu} - V^{\mu}_{ab} \quad V^{\mu}_{ab} = \frac{1}{2}(\xi^{\dagger}\partial^{\mu}\xi + \xi\partial^{\mu}\xi^{\dagger})\; A^{\mu}_{ab} = \frac{i}{2}(\xi^{\dagger}\partial^{\mu}\xi - \xi\partial^{\mu}\xi^{\dagger})$$

•
$$\mathcal{L} = \frac{f^2}{8} \operatorname{Tr} \partial^{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger} + \frac{f^2 B_0}{4} \operatorname{Tr} (m_q \Sigma + m_q \Sigma^{\dagger})$$

$$-\operatorname{Tr} \bar{H}_a i v \cdot D_{ba} H_b + g \operatorname{Tr} \bar{H}_a H_b \gamma_\mu \gamma_5 A_{ba}^\mu + \dots$$

$$ullet$$
 In rest frame, $v=(1,\vec{0})$ $H_v=\left(egin{array}{cc} 0 & -ec{P}_v\cdotec{\sigma}-P_v \ 0 & 0 \end{array}
ight)$

For processes where four velocity is conserved we can work in heavy meson rest frame and H_v can be represented by 2×2 field

$$H_a = \vec{P}_a \cdot \vec{\sigma} + P_a$$

$$\mathcal{L} = \text{Tr}[H_a^{\dagger}(iD_0)_{ba}H_b] - g\text{Tr}[H_a^{\dagger}H_b\,\vec{\sigma}\cdot\vec{A}_{ba}] + \frac{\Delta_H}{4}\text{Tr}[H_a^{\dagger}\,\sigma^i\,H_a\,\sigma^i]$$

• Including Doubly Heavy Baryons 2×2 field $\rightarrow 5 \times 2$ field

$$H_{a,\alpha\beta} \to \mathcal{H}_{a,\mu\beta} = H_{a,\alpha\beta} + T_{a,i\beta}$$

$$T_{a,i\beta} = \sqrt{2} \left(\Xi_{a,i\beta}^* + \frac{1}{\sqrt{3}} \Xi_{a,\gamma} \, \sigma_{\gamma\beta}^i \right) \qquad \Xi_{a,i\beta}^* \, \sigma_{\beta\gamma}^i = 0$$

Transformations

rotations
$$\mathcal{H}'_a = \mathcal{R}\mathcal{H}_a U^{\dagger}$$
 $\mathcal{R} = \begin{pmatrix} U & 0 \\ 0 & R \end{pmatrix}$ $U - 2 \times 2$ $R - 3 \times 3$

heavy quark spin
$$\mathcal{H}'_a = S\mathcal{H}_a$$

parity
$$\mathcal{H}'_a = -\mathcal{H}_a$$
 $S \subset U(5)$ $V \subset SU(3)$

$$SU(3)$$
 chiral $\mathcal{H}'_a = \mathcal{H}_b V_{ba}^{\dagger}$

Chiral Lagrangian

$$\mathcal{L} = \operatorname{Tr}[\mathcal{H}_a^{\dagger}(iD_0)_{ba}\mathcal{H}_b] - g\operatorname{Tr}[\mathcal{H}_a^{\dagger}\mathcal{H}_b\,\vec{\sigma}\cdot\vec{A}_{ba}] + \frac{\Delta_H}{4}\operatorname{Tr}[\mathcal{H}_a^{\dagger}\,\Sigma^i\,\mathcal{H}_a\,\sigma^i]$$

$$\vec{\Sigma} = \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\mathcal{T}} \end{pmatrix} \qquad (\mathcal{T}^i)_{jk} = -i\epsilon_{ijk}.$$

• hyperfine splitting
$$m_{\Xi^*} - m_{\Xi} = \frac{3}{4}(m_{P^*} - m_P)$$

Including electromagnetic interactions

$$\frac{e\beta}{2} \text{Tr}[\mathcal{H}_a^{\dagger} \mathcal{H}_b \vec{\sigma} \cdot \vec{B} Q_{ab}] + \frac{e}{2m_Q} Q' \text{Tr}[\mathcal{H}_a^{\dagger} \vec{\Sigma}' \cdot \vec{B} \mathcal{H}_b] \qquad \vec{\Sigma}' = \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & -2\vec{\mathcal{T}} \end{pmatrix}$$

• Radiative Decay Rates $\beta = \frac{1}{m_a}$ in quark model

$$\Gamma[P_a^* \to P_a \gamma] = \frac{\alpha}{3} \left(\beta Q_{aa} + \frac{Q'}{m_Q} \right)^2 \frac{m_P}{m_{P^*}} E_{\gamma}^3$$

$$\Gamma[\Xi_a^* \to \Xi_a \gamma] = \frac{4\alpha}{9} \left(\beta Q_{aa} - \frac{Q'}{m_Q} \right)^2 \frac{m_\Xi}{m_{\Xi^*}} E_{\gamma}^3$$

• Include $O(\sqrt{m_q})$ chiral corrections

(Amundsen, et. al.)

$$\beta Q_{11} \rightarrow \frac{2}{3}\beta - \frac{g^2 m_K}{4\pi f_K^2} - \frac{g^2 m_\pi}{4\pi f_\pi^2}$$

$$\beta Q_{22} \rightarrow -\frac{1}{3}\beta + \frac{g^2 m_{\pi}}{4\pi f_{\pi}^2}$$
 $\beta Q_{33} \rightarrow -\frac{1}{3}\beta + \frac{g^2 m_K}{4\pi f_K^2}$

Fit	$\beta^{-1}({ m MeV})$	$m_c({ m MeV})$	$\Gamma[\Xi_{cc}^{*++}] (\mathrm{keV})$	$\Gamma[\Xi_{cc}^{*+}] (\mathrm{keV})$
QM 1	379	1863	$3.3 \left(\frac{E_{\gamma}}{80 \mathrm{MeV}}\right)^3$	$2.6 \left(\frac{E_{\gamma}}{80 \mathrm{MeV}} \right)^3$
QM 2	356	1500	$3.4 \left(\frac{E_{\gamma}}{80 \mathrm{MeV}}\right)^3$	$3.2 \left(\frac{E_{\gamma}}{80 \mathrm{MeV}}\right)^3$
χ PT 1	272	1432	$2.3 \left(\frac{E_{\gamma}}{80 \mathrm{MeV}}\right)^3$	$3.5 \left(\frac{E_{\gamma}}{80 \mathrm{MeV}}\right)^3$
χ PT 2	276	1500	$2.3 \left(\frac{E_{\gamma}}{80 \mathrm{MeV}}\right)^3$	$3.3 \left(\frac{E_{\gamma}}{80 \mathrm{MeV}}\right)^3$

• QM: no chiral correction I - fit m_c 2- fix m_c = 1500 MeV

• $\chi PT: f_{\pi} = 130 \text{ MeV} \quad f_{K} = 159 \text{ MeV}$

• $\Gamma[\Xi^*] \sim 3 \,\mathrm{keV}$

$$QM : \Gamma[\Xi^{*++}] \approx \Gamma[\Xi^{*+}]$$

$$\chi PT : \Gamma[\Xi^{*++}] < \Gamma[\Xi^{*+}]$$

Quenched and Partially Quenched Theories

Existing calculations of bbq, ccq baryons are quenched
 Lewis, Mathur, Woloshyn; Flynn, Mescia, Tariq

Lattice can potentially answer important questions:

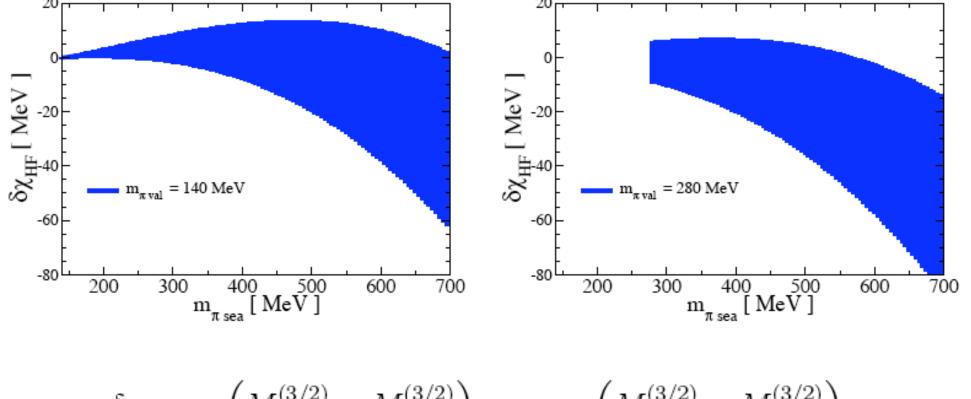

how heavy quarks have to be for Quark-Diquark symmetry to work? predict masses, hyperfine splittings

matrix elements for em, weak decays

- Simulations w/ dynamical sea quarks needed (and are being planned)
- \bullet Motivates construction of quenched and partially quenched versions of Quark-Diquark symmetric $\chi {\rm PT}$

T.M., B. Tiburzi, PRD 74, 054505 (2006)

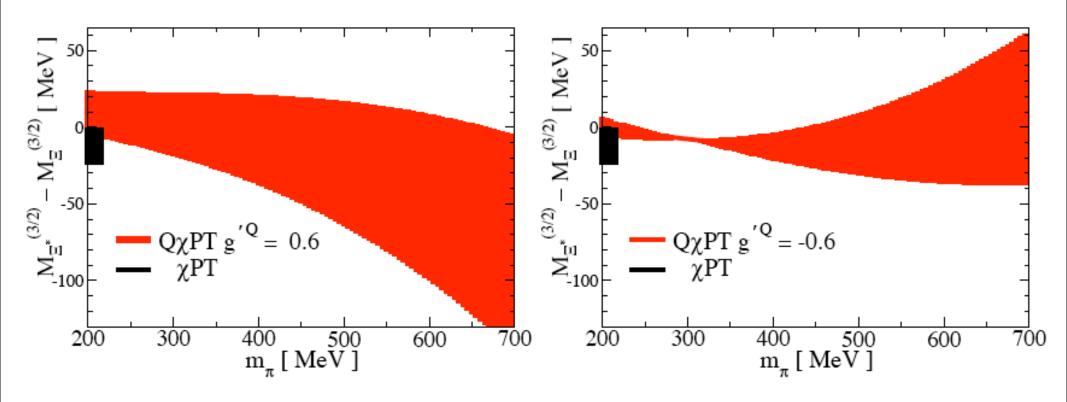
One loop mass corrections


nonanalytic corrections to hyperfine splitting

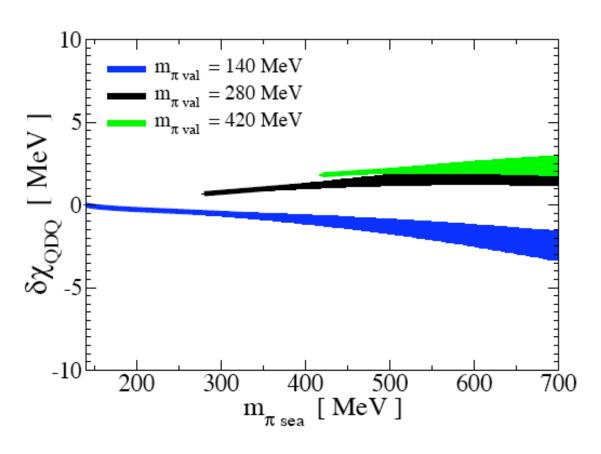
$$\delta m_{\Xi_{cc}^*} - \delta m_{\Xi_{cc}} = \begin{cases} -7.0 \,\text{MeV} & \mu = 500 \,\text{MeV} \\ 8.1 \,\text{MeV} & \mu = 1000 \,\text{MeV} \\ 16.9 \,\text{MeV} & \mu = 1500 \,\text{MeV} \end{cases}$$

$$\delta m_{\Xi_{cc}^*} - \delta m_{\Xi_{cc}} - \frac{3}{4} (\delta m_{D^*} - \delta m_D) = \begin{cases} 3.9 \,\mathrm{MeV} & \mu = 500 \,\mathrm{MeV} \\ 5.3 \,\mathrm{MeV} & \mu = 1000 \,\mathrm{MeV} \\ 6.1 \,\mathrm{MeV} & \mu = 1500 \,\mathrm{MeV} \end{cases}$$

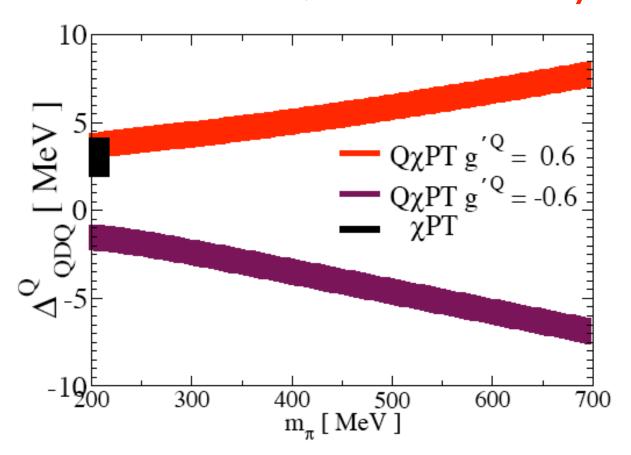
- \bullet μ dependence cancelled by counterterms (not included)
- nonanalytic chiral corrections small


ullet PQQ χ PT nonanalytic corrections to hyperfine splittings

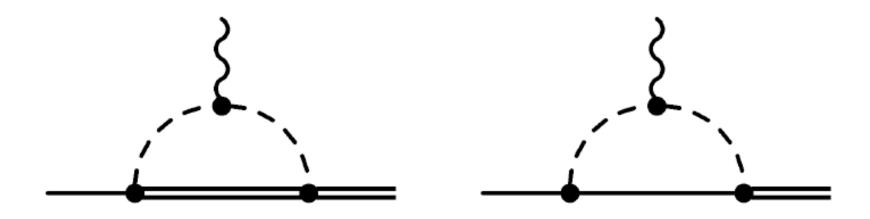
$$\delta \chi_{HF} = \left(M_{\Xi^*}^{(3/2)} - M_{\Xi}^{(3/2)} \right)_{PQ\chi PT} - \left(M_{\Xi^*}^{(3/2)} - M_{\Xi}^{(3/2)} \right)_{\chi PT}$$


nonanalytic corrections large: +15 MeV, -60 MeV

qualitatively similar results in quenched theory


$$\mathcal{L}^{Q} = \left(\mathcal{H}^{\dagger}(\mathcal{H}i\overset{\leftarrow}{D}_{0})\right) - g^{Q}\left(\mathcal{H}^{\dagger}\mathcal{H}\boldsymbol{A}\cdot\boldsymbol{\sigma}\right) - g'^{Q}\left(\mathcal{H}^{\dagger}\mathcal{H}\boldsymbol{\sigma}\right)\cdot\operatorname{str}(\boldsymbol{A}) + \frac{\Delta_{H}^{Q}}{4}\left(\mathcal{H}^{\dagger}\boldsymbol{\Sigma}\cdot\mathcal{H}\boldsymbol{\sigma}\right) + \sigma^{Q}\left(\mathcal{H}^{\dagger}\mathcal{H}\boldsymbol{\mathcal{M}}\right) + \sigma'^{Q}\left(\mathcal{H}^{\dagger}\mathcal{H}\right)\operatorname{str}(\boldsymbol{\mathcal{M}})$$

Small Corrections (< 10 MeV) to Quark-Diquark Symmetry Prediction for hyperfine splittings


$$\begin{split} \delta\chi_{QDQ} \; &= \; \left[M_{\Xi^*}^{(3/2)} - M_{\Xi}^{(3/2)} - \frac{3}{4} \left(M_{P^*}^{(3/2)} - M_{P}^{(3/2)} \right) \right]_{\text{PQ}\chi\text{PT}} \\ &- \left[M_{\Xi^*}^{(3/2)} - M_{\Xi}^{(3/2)} - \frac{3}{4} \left(M_{P^*}^{(3/2)} - M_{P}^{(3/2)} \right) \right]_{\text{\gammaPT}} \end{split}$$

Small Corrections in Quenched Theory as well

• Chiral Extrapolation For EM decays (PQQ χ PT)

$$\Gamma(\Xi_a^* \to \Xi_a \gamma) = \frac{4\alpha}{9} \left[\left(\beta \mathcal{Q}_a - \frac{Q'}{2m_Q} + \delta \beta_a \right)^2 + \frac{3}{4} E_\gamma^2 \left(\frac{\beta_{E2} \mathcal{Q}_a}{m_Q \Lambda_\chi} + \delta \beta_{E2a} \right)^2 \right] \frac{M_\Xi}{M_{\Xi^*}} E_{\gamma^*}^3$$

• Expanding in Δ/m_{GB} and keeping $O(\sqrt{m_q})$ correction only, gives <~10% error

for physical meson masses

Summary/Outlook

- ullet Heavy Quark-Diquark Symmetry: useful for doubly heavy baryons $ar Q ar Q ar q \leftrightarrow Q ar q$
- NRQCD required for doubly heavy baryons
 Quark-Diquark symmetry at lowest order in v expansion
- \bullet Chiral Lagrangians with Quark-Diquark Symmetry predictions for $\Xi_{cc}^*\to\Xi_{cc}+\gamma$ in conflict with SELEX
- Partially Quenched/Quenched Generalizations
 light quark mass dependence of hyperfine splittings, em decays

Future Work


ChPT: develop covariant formalism, apply to weak decays

NRQCD: v^2, α_s corrections

lattice studies: how heavy must quarks be for Q-DQ symmetry to hold?

Extra Slides

One loop mass corrections

$$\begin{split} \delta m_{\Xi_a^*} &= \sum_{i,b} \mathcal{C}_{ab}^i \frac{g^2}{16\pi^2 f^2} \left(\frac{5}{9} K(m_{\Xi_b^*} - m_{\Xi_a^*}, m_i, \mu) + \frac{4}{9} K(m_{\Xi_b} - m_{\Xi_a^*}, m_i, \mu) \right) \\ \delta m_{\Xi_a} &= \sum_{i,b} \mathcal{C}_{ab}^i \frac{g^2}{16\pi^2 f^2} \left(\frac{1}{9} K(m_{\Xi_b} - m_{\Xi_a}, m_i, \mu) + \frac{8}{9} K(m_{\Xi_b^*} - m_{\Xi_a}, m_i, \mu) \right) \\ \delta m_{H_a} &= \sum_{i,b} \mathcal{C}_{ab}^i \frac{g^2}{16\pi^2 f^2} K(m_{H_b^*} - m_{H_a}, m_i, \mu) \\ \delta m_{H_a^*} &= \sum_{i,b} \mathcal{C}_{ab}^i \frac{g^2}{16\pi^2 f^2} \left(\frac{1}{3} K(m_{H_b} - m_{H_a^*}, m_i, \mu) + \frac{2}{3} K(m_{H_b^*} - m_{H_a^*}, m_i, \mu) \right) \end{split}$$

$$K(\delta,m) = (-2\,\delta^3 + 3\,m^2\,\delta)\,\ln\left(\frac{m^2}{\mu^2}\right) + 2\,\delta\left(\delta^2 - m^2\right)F\left(\frac{\delta}{m}\right) + 4\,\delta^3 - 5\,\delta\,m^2 \quad + \text{ cntrtm.}$$

$$F(x) = 2\frac{\sqrt{1-x^2}}{x} \left[\frac{\pi}{2} - \text{Tan}^{-1} \left(\frac{x}{\sqrt{1-x^2}} \right) \right] \qquad |x| < 1$$
$$= -2\frac{\sqrt{x^2-1}}{x} \ln\left(x + \sqrt{x^2-1}\right) \qquad |x| > 1$$

- g = 0.6, $\Delta_H = 140 \text{ MeV}$, double charm SU(3) splitting of $\delta_s = 100 \text{ MeV}$
- nonanalytic corrections to hyperfine splitting

$$\delta m_{\Xi_{cc}^*} - \delta m_{\Xi_{cc}} = \begin{cases} -7.0 \, \mathrm{MeV} & \mu = 500 \, \mathrm{MeV} \\ 8.1 \, \mathrm{MeV} & \mu = 1000 \, \mathrm{MeV} \\ 16.9 \, \mathrm{MeV} & \mu = 1500 \, \mathrm{MeV} \end{cases}$$

$$\delta m_{\Xi_{cc}^*} - \delta m_{\Xi_{cc}} - \frac{3}{4} (\delta m_{D^*} - \delta m_D) = \begin{cases} 3.9 \,\mathrm{MeV} & \mu = 500 \,\mathrm{MeV} \\ 5.3 \,\mathrm{MeV} & \mu = 1000 \,\mathrm{MeV} \\ 6.1 \,\mathrm{MeV} & \mu = 1500 \,\mathrm{MeV} \end{cases}$$

- \bullet μ dependence cancelled by counterterms (not included)
- nonanalytic chiral corrections small

Excited Doubly Heavy Baryons

Light quark excitation energies

$$m_{D'} - m_D \sim 425 \,\mathrm{MeV} \qquad m_{D'_s} - m_{D_s} \approx 350 \,\mathrm{MeV}$$

P-wave cc diquark excitations

$$\Xi_{cc}^{\mathcal{P}*},\ \Xi_{cc}^{\mathcal{P}},\ J^P=\frac{3}{2}^+,\frac{1}{2}^+$$
 $\vec{S}_{cc}=0$ heavy quark singlets

$$V_{cc} = \frac{1}{2}V_{c\bar{c}}$$
 $m_{\Xi\mathcal{P}} - m_{\Xi} = 225 \,\text{MeV} \approx \frac{m_{h_c} - m_{J/\psi}}{2}$

(numerical estimate from relativistic quark models)

 Lowest mass excited double charm baryons are diquark excitations S-wave Strong Decays

$$\begin{split} &\Gamma[\Xi_{cc}^{\mathcal{P}*}\to\Xi_{cc}^*\,\pi] \;=\; \frac{\lambda_{3/2}^2}{2\pi f^2} \left(\frac{1}{2} E_{\pi^0}^2 p_{\pi^0} + E_{\pi^+}^2 p_{\pi^+}\right) \frac{m_{\Xi^*}}{m_{\Xi^{\mathcal{P}*}}} = \lambda_{3/2}^2 \, 111 \, \mathrm{MeV} \\ &\Gamma[\Xi_{cc}^{\mathcal{P}}\to\Xi_{cc}\,\pi] \;=\; \frac{\lambda_{1/2}^2}{2\pi f^2} \left(\frac{1}{2} E_{\pi^0}^2 p_{\pi^0} + E_{\pi^+}^2 p_{\pi^+}\right) \frac{m_\Xi}{m_{\Xi^{\mathcal{P}}}} = \lambda_{1/2}^2 \, 111 \, \mathrm{MeV} \,. \end{split}$$

Relatively narrow states?

radial cc diquark excitations

$$\Xi_{cc}^{\prime*},\Xi_{cc}^{\prime}$$
 $J^{P}=\frac{3}{2}^{-},\frac{1}{2}^{-}$

heavy quark doublet

$$m_{\Xi'} - m_{\Xi} = 300 \,\text{MeV} \approx \frac{m_{\psi'} - m_{J/\psi}}{2}$$

(numerical estimate from relativistic quark models)

P-wave Strong Decays

 $\tilde{g} \sim 1$ unknown coupling constant

Assume $m_{\Xi} = 3440 \, {\rm MeV}$, $m_{\Xi^*} = 3520 \, {\rm MeV}$

$$\Gamma[\Xi'_{cc}] = \tilde{g}^2 336 \,\mathrm{MeV}$$

$$\Gamma[\Xi_{cc}^{*\prime}] = \tilde{g}^2 78 \,\mathrm{MeV}$$

$$\frac{\Gamma[\Xi_{cc}^{\prime*} \to \Xi_{cc}^* \pi]}{\Gamma[\Xi_{cc}^{\prime*} \to \Xi_{cc} \pi]} = 0.56$$

$$\frac{\Gamma[\Xi'_{cc} \to \Xi^*_{cc} \,\pi]}{\Gamma[\Xi'_{cc} \to \Xi_{cc} \,\pi]} = 2.3$$

Summary

Heavy Quark-Diquark Symmetry: useful handle on doubly heavy baryons

$$\bar{Q}\bar{Q}\bar{q} \leftrightarrow Q\bar{q}$$

NRQCD required for doubly heavy baryons

Quark-Diquark symmetry at lowest order in v expansion

$$m_{\Xi^*} - m_{\Xi} = \frac{3}{4}(m_{P^*} - m_P)$$

pNRQCD from vNRQCD

- Chiral Lagrangian with Quark-Diquark symmetry new symmetry predictions:
 em decays, chiral mass corrections
 - strong decays of excited states
- More experimental results in near future ...?