

Results from Y(5S) running at Belle

A. Drutskoy, University of Cincinnati

JPS/DPF 06

Joint Meeting of Pacific Region Particle Physics Communities

October 29 – November 3, 2006, Honolulu, Hawaii.

- Introduction.
- Inclusive production of J/Ψ , D^0 and D_s at the Y(5S).
- Exclusive decays $B_s -> J/\Psi \phi (/\eta)$ and $B_s -> D_s^{+(*)} \pi^- (/\rho^-)$.
- Search for rare B_s decays.
- Future B_s physics at Super Belle.
- Conclusion.

First Y(5S) results from Belle are reported in:

Inclusive decays: hep-ex/0608015, submitted in PRL,

Exclusive decays: hep-ex/0610003, conf. paper.

ĊLEO

PRL 54, 381 (1985)

11.0

Y(5S)

10.8

W(GeV)

Introduction

Asymmetric energy e⁺e⁻ colliders (*B* Factories) running at Y(4S) :

Belle and BaBar

1985: CESR (CLEO,CUSB) ~0.1 fb⁻¹ at Y(5S)

2003: CESR (CLEO III) ~0.42 fb⁻¹ at Y(5S)

2005: Belle, KEKB ~ 1.86 fb⁻¹ at Y(5S)

2006, June 9-31: Belle, KEKB ~21.7 fb⁻¹ at Y(5S)

 $e^+e^-->Y(4S)->B\overline{B}$, where B is B^+ or B^0 meson

where $B^* \rightarrow B \gamma$ and $B_s^* \rightarrow B_s \gamma$

 $M(Y(5S)) = 10865 \pm 8 \text{ MeV/c}^2 \text{ (PDG)}$

 $\Gamma(Y(5S)) = 110 \pm 13 \text{ MeV/c}^2 (PDG)$

10.6

Y(4S)

3.0

R_{VISIBLE} 3.2 8.2

 B_s rate is ~10-20% => high lumi e^+e^- collider at the Y(5S) -> B_s factory.

11.2

Y(5S) Engineering Run at the KEKB e⁺e⁻ collider

Electron and positron beam energies were increased by 2.7% (same Lorentz boost $\beta\gamma = 0.425$) to move from Y(4S) to Y(5S).

No modifications are required for Belle detector, trigger system or software to move from Y(4S) to Y(5S).

3 days of engineering run at Y(5S): June 21 – June 23, 2005. Energy scan (30pb⁻¹ at 5 points): Y(5S) peak position $E_{\rm CM}$ = 10869 MeV was chosen. Integrated luminosity of ~1.86 fb⁻¹ was taken by Belle detector!!!

Very smooth running

Hadronic event classification

Number of bb events, number of B_s events

Y(5S) : Lumi =
$$1.857 \pm 0.001$$
 (stat) fb⁻¹ Cont (below 4S) : 3.670 ± 0.001 (stat) fb⁻¹
$$N_{bb}(5S) = 561,000 \pm 3,000 \pm 29,000 \text{ events} => 5\% \text{ uncertainty (from luminosity ratio)}$$

How to determine
$$f_s = N(B_s^{(*)} B_s^{(*)}) / N(bb)$$
?

$$B_s \overline{B}_s$$

$$B \overline{$$

- 1. $Bf(B_s \rightarrow D_s X)$ can be predicted theoretically, tree diagrams, large.
- 2. $Bf(B \rightarrow D_s X)$ is well measured at the Y(4S).

This method was developed by CLEO.

Inclusive analysis : Y(5S) -> $D_s X$, D_s -> $\phi \pi$

Estimate: hep-ex/0508047 CLEO

Bf (
$$B_s -> D_s X$$
) = (92 ± 11) %

PDG 2006:

Bf (B ->
$$D_s X$$
) = (8.7 ± 1.2)%

Bf(D_s->
$$\phi \pi^+$$
) = (4.4 ± 0.6)%

$$x(D_s) = P(D_s) / P_{max}(D_s)$$

After continuum subtraction and efficiency correction:

Bf
$$(Y(5S) \rightarrow D_S X) / 2 = (23.6 \pm 1.2 \pm 3.6) \%$$

=>
$$f_s = (17.9 \pm 1.4 \pm 4.1)\%$$
 Syst. err. dominates by $Bf(D_s -> \phi \pi^+)$

CLEO (update) $f_s = (16.8 \pm 2.6^{+6.7}_{-3.4})\%$ from D_s analysis

Estimate: hep-ex/0508047 CLEO

Bf
$$(B_s -> D^0 X) = (8 \pm 7) \%$$

PDG 2006:

Bf (B ->
$$D^0$$
 X) = (64.0 ± 3.0) %

Bf (D⁰ -> K⁻
$$\pi$$
⁺) = (3.80 ± 0.07) %

After continuum subtraction and efficiency correction:

Bf
$$(Y(5S) \rightarrow D^0 X) / 2 = (53.8 \pm 2.0 \pm 3.4) \%$$

=> $f_s = (18.1 \pm 3.6 \pm 7.5)\%$ Syst. error dominated by N(bb).

Combining with D_s result: $f_s = (18.0 \pm 1.3 \pm 3.2)\%$

CLEO (combined D_s , ϕ and B analyses) : $f_s = (21 + 6)$

Theory:

$$\frac{Bf(B_s -> J/\Psi X)}{Bf(B -> J/\Psi X)} = 1.00 \pm 0.10$$

PDG:

Bf (B ->
$$J/\Psi X$$
) = (1.094 ± 0.032) %

Bf
$$(J/\Psi \rightarrow \mu^+ \mu^-) = (5.88 \pm 0.10) \%$$

After continuum subtraction and efficiency correction:

Bf
$$(Y(5S) \rightarrow J/\Psi X) / 2 = (1.030 \pm 0.080 \pm 0.067) \%$$

Good agreement with expectations => bb number is correct

Signature of fully reconstructed exclusive B_s decays

$$e^+ e^- -> Y(5S) -> B_s B_s$$
, $B_s * B_s$, $B_s * B_s *$, where $B_s * -> B_s \gamma$

Reconstruction: B_s energy and momentum, photon from B_s^* is not reconstructed.

Two variables calculated:
$$M_{bc} = \sqrt{E^*_{beam}^2 - P^*_{B}^2}$$
, $\Delta E = E^*_{B} - E^*_{beam}$

Figures (MC simulation) are shown for the decay mode $B_s \rightarrow D_s^- \pi^+$ with $D_s^- \rightarrow \phi \pi^-$.

The signals for B_sB_s , B_s*B_s and B_s*B_s* can be separated well.

Exclusive $B_s \rightarrow D_s^{(*)+} \pi^-$ decays

Taking # of B_s 's from the inclusive analysis:

Bf(B_s -> D_s⁺
$$\pi$$
⁻) = (0.68 ± 0.22 ± 0.16)%

CDF, recalculated using PDG 2006: Bf(B_s->D_s⁺ π ⁻) = (0.38 ± 0.05 ± 0.14)%

 \boldsymbol{B}_{s}

$$B_s \rightarrow J/\psi \phi$$
, $B_s \rightarrow J/\psi \eta(\gamma\gamma)$

Clear signal at $B_s^* B_s^*$ channel; signals in $B_s^* B_s$ and $B_s^* B_s$ channels are not seen.

B_s* B_s* dominance was also observed by CLEO.

We can combine all shown channels to obtain quantitative $B_s^{(*)}$ parameters.

0.2

ΔE distributions, sum of all B_s decay modes

 N_{ev} = 1.3 ± 2.0 ev. => small signal

Decay Y(5S) ->
$$B_s^* B_s^*$$
, with B_s^* -> $B_s \gamma$.

$$\Delta E^{peak} = E_{cm}(accel.)/2 - E_{cm}(real)/2 - E(\gamma)$$

$$\Delta E^{peak} = -47.8 \pm 2.6 \text{ MeV}$$

$$N(B_s^*B_s^*) / N(B_s^{(*)}B_s^{(*)}) = (94 \pm {}^6_9)\%$$

Potential models predict B_s* B_s* dominance over B_s*B_s and B_sB_s channels, but not so strong.

M_{RC} distribution, sum of all B_s decay modes

$$M_{bc} = \sqrt{E_B^*^2 - P_B^*^2} = M(B_s^*)$$

 $M (B_s^*) = 5418 \pm 1 \pm 3$ (acc. err) MeV/c^2

Stat. and syst. accuracy better than 1 MeV/c² is expected with 23 fb⁻¹

$$M_{bc} = \sqrt{(E^*_B + \Delta E^{peak})^2 - P^*_B^2} = M(B_s)$$

 $M (B_s) = 5370 \pm 1 \pm 3 \text{ MeV/c}^2$

PDG: M (B_s) = $5369.6 \pm 2.4 \text{ MeV/c}^2$

CDF: $M(B_s) = 5366.0 \pm 0.8 \text{ MeV/c}^2$

Exclusive $B_s \rightarrow K^+ K^-$ and $B_s \rightarrow \phi \gamma$ decays

Tight cuts are used to suppress bkgr.

Signal: 2 events Bgr. ~ 0.14 ev. Est. sign.~ 0.7 ev. B_s

Signal: 1 event Bgr. ~ 0.15 ev. Est. sign.~ 0.4 ev.

Partner of B -> K+ π - penguin decay

Partner of B -> $K^* \gamma$ penguin decay

=> Small signals are expected with 23 fb⁻¹.

Exclusive $B_s \rightarrow \gamma \gamma$ decay

Natural mode to search for BSM effects, many theoretical papers devoted to this decay.

PDG limit : $Bf(B_s -> \gamma \gamma) < 1.48 \times 10^{-4}$

90% *CL* UL with 1.86 fb⁻¹: $Bf(B_s \rightarrow \gamma \gamma) < 0.53 \times 10^{-4}$.

Expected UL with 23 fb⁻¹: $Bf(B_s \rightarrow \gamma \gamma) < 4. \times 10^{-6}$.

SM: $Bf(B_s \rightarrow \gamma \gamma) = (0.5-1.0) \times 10^{-6}$.

BSM can increase *Bf* up to one-two orders of magnitude (*hep-ph/0302177* – four-generation model; *hep-ph/0404152* – R parity violation SUSY).

Exclusive $B_s \rightarrow D_s^{(*)+} D_s^{(*)-}$ decays

$$Bf(B_s->D_s^+D_s^-) < 6.7\%$$
 at 90% CL

$$B_s \rightarrow D_s^+ D_s^-$$

 $B_{s} -> D_{s}^{*+} D_{s}^{-}$

$$Bf(B_s->D_s^{*+}D_s^{-}) < 12.1\%$$
 at 90% CL

$$Bf(B_s->D_s^{*+}D_s^{*-}) < 25.7\%$$
 at 90% *CL*

$$B_{s} -> D_{s}^{*+} D_{s}^{*}$$

Expected (1.86 fb⁻¹): ~ 0.5 events in each mode

Expected with 23 fb⁻¹: Bf (B_s->D_s(*)⁺ D_s(*)⁻) = (7 ± 2) %

$$D_s^+ -> \phi \pi^+$$
, K^{*0} K^+ , K_s K^+

 $B_s - D_s^{(*)} D_s^{(*)}$ decays are *CP*- even states with large *BF*'s, leading to large $\Delta\Gamma_s/\Gamma_s$:

$$\frac{\Delta\Gamma_{CP}^{s}}{\Gamma_{s}} \approx \frac{Bf(B_{s}->D_{s}^{(*)}+D_{s}^{(*)}-)}{1-Bf(B_{s}->D_{s}^{(*)}+D_{s}^{(*)}-)/2}$$

should be compared with direct $<= \Delta\Gamma_s/\Gamma_s$ measurement to test SM. (I. Dunietz et al , PRD63,114015 (2001))

Semileptonic B_s decays

At the Y(5S) we can measure precisely semileptonic decays:

Bf (B_s->
$$D_s^+\ell^-\nu$$
)

Bf (B_s-> $D_s^+\ell^-\nu$)

Accuracy is expected to be ~(5-10)% with 23 fb⁻¹ at Y(5S)

Difficult to measure in hadron-hadron colliders.

These Bf's have to be compared with corresponding B meson Bf's. Within SM: $Bf(B_s->X^+\ell^-\nu)=Bf(B->X^+\ell^-\nu)$ If not, nonstandard contributions should be considered.

$$A_{SL} = \frac{N(b\overline{b} \rightarrow \ell^+\ell^+ X) - N(b\overline{b} \rightarrow \ell^-\ell^- X)}{N(b\overline{b} \rightarrow \ell^+\ell^+ X) + N(b\overline{b} \rightarrow \ell^-\ell^- X)} \Rightarrow \text{lepton charge asymmetry}$$

$$A_{SL}^{s} = (\Delta \Gamma_{s} / \Delta m_{s}) \tan(\phi_{s})$$
 BSM can increase A_{sl} (*Z.Xing, hep-ph/9705358*)

What else can be done at Super B Factory?

Rates at e+e- continuum should be similar, baryon production is large.

$$M(\Lambda_b) = (5624 \pm 9) \text{ MeV/c}^2$$

 $M(\Lambda_b)x2 = (11248 \pm 18) \text{ MeV/c}^2 => 6.3\% \text{ up from Y(4S)} \text{ CME}.$

Can Super B factory CM energy range be increased?

$$M(B_c) = (6286 \pm 5) \text{ MeV/c}^2$$

e+e-
$$\rightarrow$$
 B_s \overline{B}_s , $\Lambda_b\overline{\Lambda}_b$, B_c \overline{B}_c , $\Xi_b\overline{\Xi}_b$...?

Conclusions

- Inclusive production branching fractions of J/Ψ, D⁰ and D_s mesons are measured at Y(5S). Ratio of B_s meson production over all *bb*-events is determined: $f_s = (18.0 \pm 1.3 \pm 3.2)\%$ (in good agreement with CLEO).
- Significant exclusive B_s signals are observed in Y(5S) -> B_s * B_s * channel. Combining all studied decay modes, mass of B_s * meson was measured: $M(B_s^*) = 5418 \pm 1 \pm 3 (acc.calib) MeV/c^2$, and mass of B_s was measured: $M(B_s) = 5370 \pm 1 \pm 3 MeV/c^2$. Obtained B_s mass is in agreement with recent CDF measurement $M(B_s) = 5366.0 \pm 0.8 MeV/c^2$.
- Rare B_s decays are searched for at Y(5S) for the first time.
- B_s studies at e+ e- colliders running at Y(5S) have many advantages comparing with hadron-hadron colliders: high efficiency of photon reconstruction; no problems with trigger efficiency; good K/π PID. Engineering runs demonstrated, that background level is not large for studied decays.
- Many significant B_s signals are expected with 23 fb⁻¹. Important SU(3) tests can be performed. Rare B_s decays should be observed.

Background slides

Belle Detector

Inclusive analyses: selections

```
Particle ID: \pi/K: standard ID(K/\pi)

J/\Psi \rightarrow \mu^+ \mu^-:

Standard Muon ID

D^0 \rightarrow K^+ \pi^-: no cuts

D_s \rightarrow \phi \pi:

|M(\phi) - M(K+K-)| < 12 \text{ MeV/c}^2 \sim 30 \text{ cos}(\theta_{heli}) (D_s)| > 0.25 \text{ for } \phi \pi + \text{No continuum suppression cuts.}
```


Exclusive analyses: selections

Particle ID:

```
K/\pi: standard ID(K/\pi); standard lepton ID

Masses:
```

$$π^0 -> γγ$$
 $K_S -> π^+ π^-$
 $3σ$
 $K^{*0} -> K^+ π^-$
 $η -> γγ$
 $2.5σ$
 $ρ^+ -> π^+ π^0$
, $P(γ) > 150 \text{ MeV/c}$
 $φ -> K^+ K^-$
 $3σ$
 $- 30 < M(μ+μ-) - M(J/ψ) < 30 MeV/c^2$
 $3σ$
 $- 100 < M(e+e-) - M(J/ψ) < 30 MeV/c^2$
 $D_s^+ -> φπ^+$
, $K^{*0} K^+$
, K_s^+
,

Continuum suppression:

```
Angle between B_s thrusts: |\cos\theta| < 0.8 for D_s^{(*)+} \pi-; |\cos\theta| < 0.9 for J/Ψ; |\cos\theta| < 0.7 for D_s^{(*)+} \rho-; |\cos\theta| < 0.6 for K*0 K* modes; Fox2<0.3 for D_s^{(*)+} \pi^{-7} \rho^{-7}; Fox2<0.4 for J/ψ modes
```