## Recent Charmonium Results from Belle



#### Hulya Guler

#### University of Hawaii at Manoa

Joint Meeting of Pacific Region Particle Physics Communities

31 October 2006

- Brief overview of KEKB and Belle
- First observation of  $B^{\pm} \rightarrow \chi_{cl} \pi^{\pm}$
- First observation of  $B^0 \rightarrow J/\psi \eta$
- Search for  $B \rightarrow J/\psi \eta' K$
- Charmonium branching fractions through  $B \rightarrow \phi \phi K$
- Conclusions



$$L_{\text{peak}} = 1.65 \times 10^{34} \,\text{cm}^{-2} \,\text{s}^{-1}$$
  
 $\int L \, dt = 649 \,\text{fb}^{-1}$ 

$$\int L dt = 649 \,\mathrm{fb}^-$$





The analyses presented here are based on 388-449 million B-pairs

#### The Belle Detector



#### SVD vertex resolution:

(first  $152 \times 10^6 B$ -pairs)

SVD1: 
$$\sigma_{dz} = (42 \oplus 44/p\beta \sin(\theta)^{5/2})\mu \text{ m}, \ \sigma_{d\rho} = (19 \oplus 54/p\beta \sin(\theta)^{3/2})\mu \text{ m}$$

SVD2: 
$$\sigma_{dz} = (28 \oplus 32/p \beta \sin(\theta)^{5/2}) \mu \text{ m}, \quad \sigma_{dp} = (22 \oplus 36/p \beta \sin(\theta)^{3/2}) \mu \text{ m}$$

CDC + SVD momentum resolution: 
$$\sigma_{p_t}/p_t = (0.19 p_t \oplus 0.30/\beta)\%^{3.5 \text{GeV}}$$

ECL energy resolution: 
$$\sigma_E / E (\text{GeV}) = \frac{0.066}{E} \oplus \frac{0.81}{E^{1/4}} \oplus 1.34 \%$$
 [1.6% at 1 GeV]

ECL position resolution: 
$$\sigma = (0.27 + \frac{3.4}{E^{1/2}} + \frac{1.8}{E^{1/4}}) \text{mm}$$

# Kaon ID Barrel ACC, TOF, CDC (0.5 GeV/<math>c $\epsilon(K) = (87.99 \pm 0.12)\%$ $\epsilon(\pi) = (8.53 \pm 0.10)\%$ Endcap ACC, CDC

Endcap ACC, CDC  

$$(0.8 GeV/ $c$   
 $\epsilon(K) = (82.67 \pm 0.43)\%$   
 $\epsilon(\pi) = (7.81 \pm 0.29)\%$$$

#### Electron ID

$$(1.0 (
 $\epsilon(e) = (92.4 \pm 0.4)\%$   $\epsilon$   
 $\epsilon(\pi) = (0.25 \pm 0.02)\%$   $\epsilon$   
 $\epsilon(K) = (0.43 \pm 0.07)\%$$$

#### Muon ID

$$(1.0 
 $\epsilon(\mu) = (92.5 \pm 0.8)\%$   
 $\epsilon(\pi) = (2.76 \pm 0.09)\%$   
 $\epsilon(K) = (3.3 \pm 0.8)\%$$$



The decay  $B^{\pm} \to \chi_{cl} K^{\pm}$  has recently been measured by both Belle and BaBar:



■  $B^{\pm} \rightarrow \chi_{cl} \pi^{\pm}$ , the Cabbibo-suppressed counterpart of  $B^{\pm} \rightarrow \chi_{cl} K^{\pm}$ , is expected to occur with a relative branching fraction of  $|V_{cd}/V_{cs}|^2 \approx 5\%$ 



• a  $b \rightarrow d c \bar{c}$  penguin contribution may lead to direct CP-violation in  $B^{\pm} \rightarrow \chi_{cl} \pi^{\pm}$ 



- $\chi_{cl}$  candidates are reconstructed through the decay  $\chi_{cl} \rightarrow \gamma J/\psi$
- **B**-candidates are selected using the kinematic variables  $M_{bc} \equiv \sqrt{E_{cm}^2 p_B^{*2}}$  and  $\Delta E \equiv E_B^* E_{cm}$









• Perform a binned maximum likelihood fit to the  $\Delta E$  distribution.



double gaussian + 2<sup>nd</sup>-order polynomial all parameters floated



double gaussian +  $3^{rd}$ -order polynomial signal shape fixed by  $B^{\pm} \rightarrow \chi_{cl} K^{\pm}$  fit misidentified  $B^{\pm} \rightarrow \chi_{cl} K^{\pm}$  is fit to an asymmetric gaussian using MC

• Observe  $1597 \pm 48$  events for  $B^{\pm} \rightarrow \chi_{cI} K^{\pm}$ , and  $55 \pm 10$  events for  $B^{\pm} \rightarrow \chi_{cI} \pi^{\pm}$ :

$$B(B^{\pm} \to \chi_{cI} \pi^{\pm}) = (2.2 \pm 0.4 \pm 0.3) \times 10^{-5}$$

$$\frac{B(B^{\pm} \to \chi_{cI} \pi^{\pm})}{B(B^{\pm} \to \chi_{cI} K^{\pm})} = (4.3 \pm 0.8 \pm 0.3)\%$$

statistical significance:  $6.3 \sigma$ 

based on  $388 \times 10^6 B \bar{B}$  events



Search for direct CP violation:

| Mode                                      | $N_{\_}$     | $N_{_{+}}$   | $A_{CP} = \frac{N_{-} - N_{+}}{N_{-} + N_{+}}$ |
|-------------------------------------------|--------------|--------------|------------------------------------------------|
| $B^{\pm} \rightarrow \chi_{cI} \pi^{\pm}$ | 29±7         | $25 \pm 7$   | $0.07 \pm 0.18 \pm 0.02$                       |
| $B^{\pm} \rightarrow \chi_{cl} K^{\pm}$   | $792 \pm 31$ | $807 \pm 31$ | $-0.01\pm0.03\pm0.02$                          |

- This represents the first observation of  $B^{\pm} \rightarrow \chi_{cI} \pi^{\pm}$
- Measured branching fraction:
  - is consistent with the factorization hypothesis
  - indicates that the tree-level diagram is dominant
- Published in PRD 74, 051103 (2006)

# First Observation of $B^0 \rightarrow J/\psi \eta$





- CP eigenstate
- If the main contribution to this decay is the tree-level diagram, then, assuming factorization and a pseudoscalar mixing angle of -17°, we can expect the branching fraction for  $B^0 \to J/\psi \eta$  to be ~63% of that for  $B^0 \to J/\psi \pi^0$ ,  $B(B^0 \to J/\psi \pi^0) = (2.2 \pm 0.4) \times 10^{-5}$  (PDG 2006)
- Provides a test for higher-order contributions such as penguin pollution
- Previous studies were able to yield only upper limits, but the statistics available now make a branching-fraction measurement possible.

# First Observation of $B^0 \rightarrow J/\psi \eta$



- Reconstruct  $\eta$  through its decays  $\eta \rightarrow \gamma \gamma$  and  $\eta \rightarrow \pi^+ \pi^- \pi^0$
- Perform unbinned maximum likelihood fit to the  $\Delta E$  spectrum
- Observe  $43.1 \pm 8.9$  events with  $\eta \rightarrow \gamma \gamma$ , and  $16.6 \pm 5.8$  events with  $\eta \rightarrow \pi^+ \pi^- \pi^0$





double gaussian + Crystal Ball function + 2<sup>nd</sup>-order polynomial

signal and background shapes fixed based on MC

statistical significance:  $8.1 \sigma$  based on  $449 \times 10^6 B \bar{B}$  events

# First Observation of $B^0 \rightarrow J/\psi \eta$



- Measured branching fractions:
  - $B(B^0 \to J/\psi \eta) = (9.5 \pm 2.0) \times 10^{-6} \text{ for } \eta \to \gamma \gamma$
  - $B(B^0 \to J/\psi \eta) = (10.1 \pm 3.5) \times 10^{-6} \text{ for } \eta \to \pi^+ \pi^- \pi^0$
  - combined:  $B(B^0 \to J/\psi \eta) = (9.6 \pm 1.7 \pm 0.7) \times 10^{-6}$
- This represents the first observation of  $B^0 \rightarrow J/\psi \eta$
- Branching fraction is  $(44\pm12)\%$  of that for  $B^0 \rightarrow J/\psi \pi^0$ 
  - consistent with expectations based on factorization and the quark model
  - tree-level contribution appears to be dominant
- posted as hep-ex/0609047

## Search for B $\rightarrow$ J/ $\psi \eta'$ K



- This decay requires the creation of an  $s \overline{s}$  quark pair in the final state.
- Two possible mechanisms for such a decay:
  - Three-body decay:



- $B^{\pm} \rightarrow \psi_g K$ ,  $\psi_g \rightarrow J/\psi \eta'$ , where  $\psi_g$  is a hybrid charmonium state (i.e.,  $c \, \overline{c} \, g$ )
- The similar decay  $B \rightarrow J/\psi \phi K$  was observed by CLEO in 2000, with a branching fraction  $B(B \rightarrow J/\psi \phi K) = (8.8^{+3.5}_{-3.0} \pm 1.3) \times 10^{-5}$  [PRL **84**, 1393 (2000)]
- More recently, BaBar measured the branching fractions:

$$B(B^{\pm} \to J/\psi \eta K^{\pm}) = (10.8 \pm 2.3 \pm 2.4) \times 10^{-5}$$

$$B(B^0 \to J/\psi \eta K_S^0) = (8.4 \pm 2.6 \pm 2.7) \times 10^{-5}$$

Note that these include  $B \rightarrow \psi(2S)K$ ,  $\psi(2S) \rightarrow J/\psi \eta$ .

• Hybrid charmonium states may also be involved in X(3872), Y(4260), etc.

# Search for $B \rightarrow J/\psi \eta' K$



$$B^{\pm} \rightarrow J/\psi \eta' K^{\pm}$$

• Results of 2-D unbinned maximum-likelihood fit to  $\Delta E$  and  $M_{bc}$ :



- $B(B^{\pm} \rightarrow J/\psi \eta' K^{\pm}) < 8.8 \times 10^{-5}$  at 90% confidence level
- based on  $388 \times 10^6 B \bar{B}$  events
- worth revisiting in two years with  $\sim 1 \, \text{ab}^{-1}$

# Search for $B \rightarrow J/\psi \eta' K$



$$B^0 \rightarrow J/\psi \eta' K_S^0$$

• Results of 2-D unbinned maximum-likelihood fit to  $\Delta E$  and  $M_{bc}$ :



- $B(B^0 \rightarrow J/\psi \eta' K_S^0) < 2.5 \times 10^{-5}$  at 90% confidence level
- based on  $388 \times 10^6 B \bar{B}$  events
- unlikely to see anything even with twice as much data

to be submitted to PRL

# Charmonium via $B \rightarrow \phi \phi K$



■ A high-statistics analysis has been performed for  $B^{\pm} \rightarrow \phi \phi K^{\pm}$ 



# Charmonium via $B \rightarrow \phi \phi K$



Fitting the spectra and using the known branching fractions for  $B^{\pm} \to \eta_c K^{\pm}$  and  $B^{\pm} \to J/\psi K^{\pm}$  yields the following charmonium branching fractions:

| mode                              | measured branching fraction              | PDG 2006                         |
|-----------------------------------|------------------------------------------|----------------------------------|
| $\eta_c \rightarrow \phi \phi$    | $(2.7^{+0.6}_{-0.5}\pm0.4)\times10^{-3}$ | $(2.7\pm0.9)\times10^{-3}$       |
| $\eta_c \rightarrow \phi K^+ K^-$ | $(3.9^{+0.7}_{-0.6}\pm0.6)\times10^{-3}$ | $(2.9\pm1.4)\times10^{-3}$       |
| $\eta_c \rightarrow 2(K^+K^-)$    | $(2.6^{+0.5}_{-0.4}\pm0.4)\times10^{-3}$ | $(1.5\pm0.7)\times10^{-3}$       |
| $J/\psi \rightarrow \phi K^+ K^-$ | $(1.2\pm0.3\pm0.1)\times10^{-3}$         | $(1.83 \pm 0.24) \times 10^{-3}$ |
| $J/\psi \to 2(K^+K^-)$            | $(9.7^{+1.7}_{-1.6}\pm1.0)\times10^{-4}$ | $(7.08 \pm 1.4) \times 10^{-4}$  |

contributed to ICHEP 2006

## **Conclusions**



- We have observed several Cabbibo-suppressed B decays to charmonium.
  - First observation of  $B^{\pm} \rightarrow \chi_{cl} \pi^{\pm}$ :

$$\frac{B(B^{\pm} \to \chi_{cl} \pi^{\pm})}{B(B^{\pm} \to \chi_{cl} K^{\pm})} = (4.3 \pm 0.8 \pm 0.3)\%$$
, consistent with S. M. prediction

• First observation of  $B^0 \rightarrow J/\psi \eta$ :

$$B(B^0 \rightarrow J/\psi \eta) = (9.6 \pm 1.7 \pm 0.7) \times 10^{-6}$$
, consistent with S. M. prediction

So far, no significant direct CP-violation observed.

## **Conclusions**



- Various multi-body B decays to charmonium have also been studied:
  - Upper limits at 90% confidence level for  $B \rightarrow J/\psi \eta' K$ :

$$B(B^{\pm} \to J/\psi \eta' K^{\pm}) < 8.8 \times 10^{-5}$$
  
 $B(B^{0} \to J/\psi \eta' K_{S}^{0}) < 2.5 \times 10^{-5}$ 

■ Branching fractions have been obtained for  $\eta_c$  and  $J/\psi$  decays to  $\phi \phi$ ,  $\phi K^+ K^-$ , and  $2(K^+ K^-)$  by studying  $B^\pm \to 2(K^+ K^-) K^\pm$ 

- See also A. Imoto's poster presentation on  $B^0 \rightarrow J/\psi \pi^+ \pi^-$ .
- Stay tuned for more charmonium results from Belle!