Results of B \rightarrow \omega h and B \rightarrow \phi \phi K at Belle

Minori WATANABE, Niigata univ (For the Belle collaboration) 1st Nov 2006 DPF/JPS meeting

Introduction

 $B \rightarrow \omega h$ (h=K[±], K⁰, π^{\pm} , π^{0}) Update 350fb⁻¹ B.F. $B^0 \rightarrow \omega K^0(U.L \rightarrow B.F.)$ New Update B.F. $B^{\pm} \rightarrow \omega K^{\pm}$, $B \rightarrow \omega \pi$, A_{CP} Update 414fb⁻¹ B→¢¢K We add more data and New B.F. $B^0 \rightarrow \phi \phi K^0$, A_{CP} add mode. **Update** | B.F. $B^{\pm} \rightarrow \phi \phi K^{\pm}$ **Previous results(78fb⁻¹)** $Br(B^{\pm} \to \omega K^{\pm}) = (6.5^{+1.3}_{-1.2} \pm 0.6) \times 10^{-6} \quad A_{CP} = (-0.06^{+0.21}_{-0.18} \pm 0.01)$ $A_{CP} = (-0.5^{+0.23}_{-0.20} \pm 0.02)$ $Br(B^{\pm} \to \omega \pi^{\pm}) = (5.7^{+1.4}_{-1.3} \pm 0.6) \times 10^{-6}$ Large? $Br(B^0 \rightarrow \omega K^0) < 7.6 \times 10^{-6}$ $Br(B^0 \rightarrow \omega \pi^0) < 1.9 \times 10^{-6}$ [Phys.Rev.D70, 012001(2004)]

 $Br(B^{\pm} \rightarrow \phi \phi K^{\pm}) = (2.6^{+1.1}_{-0.9} \pm 0.3) \times 10^{-6}$

[Phys. Rev. Lett. 91, 241802 (2003)]

KEKB & Belle Detector

Continuum suppression with Event topology

B→ωh

hep-ex/0508052 submitted PRD

Introduction of $B \rightarrow \omega h$

Previous results @ 78fb⁻¹

$$Br(B^{\pm} \to \omega K^{\pm}) = (6.5^{+1.3}_{-1.2} \pm 0.6) \times 10^{-6}$$

$$Br(B^{\pm} \to \omega \pi^{\pm}) = (5.7^{+1.4}_{-1.3} \pm 0.6) \times 10^{-6}$$

$$Br(B^{0} \to \omega K^{0}) < 7.6 \times 10^{-6}$$

$$Update with 350 \text{fb}^{-1}$$

$$Br(B^{0} \to \omega \pi^{0}) < 1.9 \times 10^{-6}$$

$$[Phys.Rev.D70, 012001(2004)]$$

B→ωK B.F.(350fb⁻¹)

B→ωK → (π⁺π⁻π⁰)K Unbinned maximum Likelihood 2D fit (ΔE, M_{bc})

B→ωπ B.F.(350fb⁻¹)

$$\bullet \mathsf{B} \rightarrow \omega \pi \rightarrow (\pi^+ \pi^- \pi^0) \pi$$

• Unbinned maximum likelihood 2D fit (ΔE , M_{bc})

A_{CP} of $B \rightarrow \omega h$

Generally A_{CP} is small in SM

A_{CP} of $B \rightarrow \omega h$

Generally A_{CP} is small in SM \rightarrow sensitive to New Physics.

A_{CP} of $B \rightarrow \omega h (350 fb^{-1})$

Summary of $B \rightarrow \omega h$

$@386 \text{ M B}\overline{B}$

We update the result for charged modes.

$$\begin{cases} Br(B^{\pm} \to \omega K^{\pm}) = (8.2 \pm 0.6 \pm 0.5) \times 10^{-6}, & A_{CP} = (0.05^{+0.08}_{-0.07} \pm 0.01) \\ Br(B^{\pm} \to \omega \pi^{\pm}) = (7.0 \pm 0.6 \pm 0.5) \times 10^{-6}, & A_{CP} = (-0.02 \pm 0.09 \pm 0.01) \end{cases}$$

We succeed to measure B.F.

$$Br(B^0 \to \omega K^0) = (4.4^{+0.8}_{-0.7} \pm 0.3) \times 10^{-6}$$

We need more data for this mode.

$$Br(B^0 \to \omega \pi^0) < 0.9 \times 10^{-6} (90\% C.L.)$$

Introduction of $B \rightarrow \phi \phi K$

• The first study about $b \rightarrow s \overline{ssss}$ decay

Introduction of $B \rightarrow \phi \phi K$

- The first study about $b \rightarrow s\overline{ss}\overline{ss}$ decay
- The same final states through charmonium (η_c) decays

M_{4K} spectrum

1.Background from non-resonant $B \rightarrow \phi(KK)K/5K$

•Non-resonant components:

 $B \rightarrow \phi(KK)K$ and 5K are subtracted from signal yield.

1.Charmless $B \rightarrow \phi \phi K B.F.(441 fb^{-1})$

• Signal region: $M_{4K} < 2.85 \text{ MeV/c}^2$ • Unbinned maximum likelihood 2D fit ($M_{bc},\Delta E$)

2. Charmoinum $B \rightarrow \phi \phi K B.F.(441 fb^{-1})$

2. Charmonium $B \rightarrow \phi \phi K B.F.(441 fb^{-1})$

2. Charmoinum $B \rightarrow \phi \phi K B.F.(441 fb^{-1})$

2. Charmonium $B \rightarrow \phi \phi K B.F.(441 fb^{-1})$

Preliminary

Mode	Yield	Efficiency (%)	$\mathcal{B}(\times 10^{-6})$
$B^{\pm} \to \eta_c K^{\pm}, \eta_c \to \phi \phi$	$29.75^{+6.80}_{-5.49}$	2.72 ± 0.01	$2.44^{+0.56}_{-0.45} \pm 0.19$
$B^{\pm} \rightarrow \eta_c K^{\pm}, \eta_c \rightarrow \phi K^+ K^-$	$76.76_{-12.44}^{+13.55}$	4.85 ± 0.02	$3.54^{+0.62}_{-0.57} \pm 0.29$
$B^{\pm} \rightarrow \eta_c K^{\pm}, \eta_c \rightarrow 2(K^+K^-)$	$104.60^{+20.20}_{-17.25}$	9.93 ± 0.05	$2.35^{+0.45}_{-0.39} \pm 0.19$
$B^{\pm} \rightarrow J/\psi K^{\pm}, J/\psi \rightarrow \phi K^{+}K^{-}$	$25.55^{+7.02}_{-5.96}$	4.67 ± 0.02	$1.22^{+0.34}_{-0.29} \pm 0.11$
$B^{\pm} \rightarrow J/\psi K^{\pm}, J/\psi \rightarrow 2(K^+K^-)$	$40.97^{+7.26}_{-6.59}$	9.41 ± 0.05	$0.97^{+0.17}_{-0.16}\pm0.09$

$B \rightarrow \phi \phi K$ as a probe for new physics

Interference between two decay diagram

SM: No weak phase difference $\rightarrow A_{CP} \sim 0$

non-SM: New physics can create large CP phase difference

 \Rightarrow A_{CP} ~ 0.4 at most

[M.Hazumi, Phys. Lett. B583. 285. (2004)]

$A_{CP} B \rightarrow \phi \phi K \text{ and } B \rightarrow \eta_c (\rightarrow \phi \phi) K \text{ interference}$

Preliminary

$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)}$$

$$= (0.01^{+0.19}_{-0.16} \pm 0.02)$$

A_{CP} is consistent with zero

Summary

Update of $B \rightarrow \omega h$ **B.F. and** A_{CP} (with 350fb⁻¹ data)

hep-ex/0508052 Submitted PRD

Preliminary

$$\begin{cases} Br(B^{\pm} \to \omega K^{\pm}) = (8.2 \pm 0.6 \pm 0.5) \times 10^{-6} &, A_{CP} = (0.05^{+0.08}_{-0.07} \pm 0.01) \\ Br(B^{\pm} \to \omega \pi^{\pm}) = (7.0 \pm 0.6 \pm 0.5) \times 10^{-6} &, A_{CP} = (-0.02 \pm 0.09 \pm 0.01) \\ \begin{cases} Br(B^{0} \to \omega K^{0}) = (4.4^{+0.8}_{-0.7} \pm 0.3) \times 10^{-6} \\ Br(B^{0} \to \omega \pi^{0}) < 0.9 \times 10^{-6} (90\% C.L.) \end{cases}$$

Update of $B \rightarrow \phi \phi K$ **B.F. and** A_{CP} (with 414fb⁻¹ data)

Non-resonant components are taken in account.

$$\begin{cases} Br(B^{\pm} \to \phi \phi K^{\pm}) = (3.18^{+0.60}_{-0.52} \pm 0.27) \times 10^{-6} \\ Br(B^{0} \to \phi \phi K^{0}) = (2.31^{+1.00}_{-0.74} \pm 0.24) \times 10^{-6} & \leftarrow \text{first observation} \end{cases}$$

 $B \rightarrow \phi \phi K$ mode can be one of probe beyond SM. $A_{CP}(B^+ \rightarrow \eta_c (\rightarrow \phi \phi) K^+) = (0.01^{+0.19}_{-0.16} \pm 0.02)$

Update results for $B \rightarrow \phi \phi K (441 \text{ fb}^{-1})$

B reconstruction

1.Daughter particle Reconstruction

$$\pi^{\pm}$$
, K[±]: tracking, particle ID
(Aerogel Cherenkov+TOF+dE/dx)
K⁰_s $\rightarrow \pi^{+}\pi^{-}$: displaced vertex
 $\pi^{0}\rightarrow\gamma\gamma$: CsI calorimeter

2. B Reconstruction

Two Independent kinematical variables

$$\begin{cases} M_{bc} = \sqrt{E_{beam}^2 - \left| \vec{\mathbf{P}}_{r \ econ} \right|^2} \\ \Delta E = E_{recon} - E_{beam} \end{cases}$$

A_{CP}, HFAG

HFAG.B.F

Mode	PDG2006 Avg.	BABAR	Belle	CLEO	CDF	New Avg.
		1117	a a 1 0 1 a a			10.9
$\phi\phi K^{\circ}$ §	New	$4.1^{+1.1}_{-1.4} \pm 0.5$	$2.3^{+1.0}_{-0.7} \pm 0.2$		2.8	8-0.7
ωK^+	5.1 ± 0.7	$6.1\pm0.6\pm0.4$	$8.1\pm0.6\pm0.5$	$3.2^{+2.4}_{-1.9} \pm 0.8$		6.9 ± 0.5
$\omega \pi^+$	5.9 ± 1.0	$6.1\pm0.7\pm0.4$	$7.0 \pm 0.6 \pm 0.5$	$11.3^{+3.3}_{-2.9} \pm 1.4$	6.7 ± 0.6	
ωK^0	$5.5^{+1.2}_{-1.0}$	$6.2\pm1.0\pm0.4$	$3.9\pm0.7\pm0.4$	$10.0^{+5.4}_{-4.2}\pm1.4$	4.8 ±	: 0.6
$\omega \pi^0$	< 1.2	< 1.2	< 1.5	< 5.5		< 1.2

$B \rightarrow \eta_c (\rightarrow \phi \phi) K$, Purifying signals

•Non-resonant components:

B→ η_c (KK)K, 5K or B→J/ ψ (KK)K, 5K are subtracted from signal yield.

Table 8: Summary table of systematic errors of $B \to \phi \phi K$ analysis.

Mode	Tracking	PID	\mathcal{LR} cut	Fitting	K_S^0	ϵ_{eff}	$N_{B\bar{B}}$	Total
$B^{\pm} \to \phi \phi K^{\pm}$								
SVD I	5%	5%	2.7%	0.3%		1.6%	0.8%	7.8%
SVD II	5%	5%	2.7%	0.3%	_	1.4%	1.5%	7.8%
$B^0 \to \phi \phi K^0$								
SVD I	4%	4%	2.7%	0.2%	4.9%	2.1%	0.8%	8.3%
SVD II	4%	4%	2.8%	0.1%	4.9%	1.9%	1.5%	8.3%

Summary of $B \rightarrow \omega h$

	Feynman diagram					
Mode	T _u	C _u	Ps	P _d		
B→ωK⁺	0	0	0	-		
B→ωK⁰	-	-	0	-		
Β→ωπ+	0	0	I	0		
Β → ωπ ⁰	-	0	-	0		

Nucl.Phys. B675, 333(2003)

Phys.Rev.D72, 013006(2005)

Phys.Lett.B 525, 56(2002)

Eur.Phys.J.C23, 275(2002)

 $\begin{cases} \mathbf{T}_{\mathbf{u}}: \ \mathbf{b} \rightarrow \mathbf{u} \ \text{Tree color allowed} \\ \mathbf{C}_{\mathbf{u}}: \ \mathbf{b} \rightarrow \mathbf{u} \ \text{Tree color suppressed} \\ \mathbf{P}_{\mathbf{s}}: \ \mathbf{b} \rightarrow \mathbf{s} \ \text{Penguin} \\ \mathbf{P}_{\mathbf{d}}: \ \mathbf{b} \rightarrow \mathbf{d} \ \text{Penguin} \end{cases}$

 $\begin{array}{c} \mathbf{B} \rightarrow \omega \pi^{+} \\ \mathbf{B} \rightarrow \omega \mathbf{K}^{+} \end{array} \end{array} \xrightarrow{\mathsf{C}} \begin{array}{c} \mathbf{Q} \\ \mathbf{C} \\ \mathbf{D} \\ \mathbf{C} \\ \mathbf{C}$ $\Rightarrow \begin{cases} Br(B^{\pm} \to \omega K^{\pm}) = 3.22 \times 10^{-6} \\ Br(B^{0} \to \omega K^{0}) = 2.07 \times 10^{-6} \end{cases}$ **B**→ω**K**⁰

No T_{II} and P_s \rightarrow small B.F. $\mathbf{B} \rightarrow \omega \pi^{\mathbf{0}}$

And small A_{CP} between B⁺ and B⁻.

Summary of $B \rightarrow \omega h$

 P_{s}

 \mathbf{O}

Ο

Feynman diagram

C_u

 \bigcirc

 \cap

 \bigcirc

T_u

 \mathbf{O}

 \bigcirc

Mode

 $B \rightarrow \omega K^+$

 $B \rightarrow \omega K^0$

 $B \rightarrow \omega \pi^+$

 $B \rightarrow \omega \pi^0$

Nucl.Phys. B675, 333(2003)

Phys.Rev.D72, 013006(2005)

Phys.Lett.B 525, 56(2002)

Eur.Phys.J.C23, 275(2002)

- $\mathbf{T}_{\mathbf{u}}$: b \rightarrow u Tree color allowed
- $\mathbf{C}_{\mathbf{u}}$: b \rightarrow u Tree color suppressed
- P_s : b \rightarrow s Penguin
- **P**_d: b→d Penguin

B $\rightarrow \omega \pi^{+}$ (7.0 \pm 0.6 \pm 0.5) $\times 10^{-6}$ **QCD** Factorization (QCDF) **B** $\rightarrow \omega K^{+}$ (8.2 \pm 0.6 \pm 0.5) $\times 10^{-6}$ **Perturbative OCD** (POCD):

 P_{d}

 \mathbf{O}

 $\begin{array}{c} \textbf{B} \rightarrow \boldsymbol{\omega} \textbf{K}^{0} \\ \textbf{B} \rightarrow \boldsymbol{\omega} \textbf{K}^{0} \end{array} \left(4.4^{+0.8}_{-0.7} \pm 0.3 \right) \times 10^{-6} \end{array} \begin{array}{c} \textbf{Perturbative QCD (PQCD):} \\ \textbf{P} \left\{ \begin{array}{c} Br(B^{\pm} \rightarrow \boldsymbol{\omega} K^{\pm}) = 3.22 \times 10^{-6} \\ Br(B^{0} \rightarrow \boldsymbol{\omega} K^{0}) = 2.07 \times 10^{-6} \end{array} \right. \end{array}$

B→ $\omega \pi^{0}$ < 0.9×10⁻⁶(90%*C*.*L*.) } No T_u and P_s → small B.F.

And small A_{CP} between B⁺ and B⁻.

$B \rightarrow \omega h / Summary$

TABLE XVII: Signal yields(N_s), efficiencies(ϵ), efficiencies with secondary decay branching fractions and PID efficiencies ($\epsilon_{sig} \times \epsilon_{PID} \times \mathcal{B}_s$), fitting significance(Σ), branching fractions(\mathcal{B}_r), the 90% confidence level upper limits (UL) on the branching fractions for $\omega \pi^0$, and \mathcal{A}_{CP} .

Mode	N_s	$\epsilon_{svd1}(\%)$	$\epsilon_{PID}(\%)$	$\epsilon_{svd2}(\%)$	$\epsilon_{PID}(\%)$	Σ	$\mathcal{B}_r (\times 10^{-6})$	$UL(\times 10^{-6})$	\mathcal{A}_{CP}
ωK^{\pm}	$259.5^{+20.4}_{-19.4}$	10.2 ± 0.15	8.7 ± 0.13	10.0 ± 0.15	8.0 ± 0.12	19.5σ	$8.1\pm0.6\pm0.5$	_	$0.05^{+0.08}_{-0.07}\pm0.01$
$\omega \pi^{\pm}$	$224.8^{+20.3}_{-19.3}$	11.1 ± 0.15	9.1 ± 0.12	10.4 ± 0.15	8.0 ± 0.12	17.1σ	$7.0\pm0.6\pm0.5$	_	$-0.02\pm 0.09\pm 0.01$
ωK^0	$41.5\substack{+8.0 \\ -7.0}$	3.0 ± 0.08	2.7 ± 0.07	3.1 ± 0.08	2.4 ± 0.06	9.3σ	$4.4^{+0.8}_{-0.7}\pm0.3$	_	_
$\omega \pi^0$	$5.9_{-4.1}^{+4.8}$	5.3 ± 0.11	4.6 ± 0.09	4.1 ± 0.1	3.3 ± 0.08	1.5σ	_	< 0.9	-

$B \rightarrow \omega h / B.F.$ Summary

TABLE I: Summary of branching fraction results for *B* decays to ω mesons from CLEO [12], previous Belle measurements [6] [13], BaBar [14] [8] and the present analysis. The results for all fits are given as well as a 90 % confidence level upper limit if the measured yields are not judged to be significant. The signal yields and efficiencies (ϵ) are also given.

Expt.	$\# B\bar{B} (\times 10^6)$	Fit \mathcal{B} (×10 ⁻⁶)	UL \mathcal{B} (×10 ⁻⁶)	signif. (σ)	single yields	ϵ (%)
$B^+ \rightarrow \omega K^{\pm}$						
CLEO	10	$3.2^{+2.4}_{-1.9}\pm0.8$	7.9	2.1	$7.9^{+6.0}_{-4.7}$	26.0
Belle	32	$9.2^{+2.6}_{-2.3}\pm1.0$	_	6.0	$18.9\substack{+5.4 \\ -4.7}$	6.0
Belle	80	$6.5^{+1.3}_{-1.2}\pm0.6$	_	7.8	$44.6\substack{+9.1 \\ -8.3}$	8.1
BABAR	89	$5.0\pm1.0\pm0.4$	-	8.9	87.0 ± 15	18.0
This result	386	$8.2\pm0.6\pm0.5$	_	19.5	$259.5^{+20.4}_{-19.4}$	8.3 ± 0.2
$B^+ \rightarrow \omega \pi^{\pm}$						
CLEO	10	$11.3^{+3.3}_{-2.9}\pm0.8$	-	6.2	$28.5^{+8.2}_{-7.3}$	6.2
Belle	32	$4.2^{+2.0}_{-1.8}\pm0.5$	8.1	3.3	$10.4_{-4.3}^{+4.7}$	7.7
Belle	80	$5.7^{+1.4}_{-1.3}\pm0.6$	_	6.0	$42.1\substack{+10.1 \\ -9.3}$	8.7
BABAR	89	$5.4\pm1.0\pm0.5$	_	8.4	101 ± 18	19.0
This result	386	$7.0\pm0.6\pm0.5$	_	17.1	$224.8^{+20.3}_{-19.3}$	8.4 ± 0.2
$B^0 \rightarrow \omega K_S^0$						
CLEO	10	$10.0^{+5.4}_{-4.2}\pm1.4$	21.0	3.9	$7.0^{+3.0}_{-2.9}$	7.4
Belle	32	_	_	_	_	_
Belle	80	$4.0^{+1.9}_{-1.6}\pm0.5$	7.6	3.3	$11.1_{-4.4}^{+5.2}$	3.3
BABAR	232	$5.9\pm1.0\pm0.4$	_	8.6	96.0 ± 14	6.5
This result	386	$4.4^{+0.8}_{-0.7}\pm0.3$	_	9.3	$41.5_{-7.0}^{+8.0}$	2.5 ± 0.1
$B^0 \rightarrow \omega \pi^0$						
CLEO	10	_	_	_	_	_
Belle	32	-	_	_	-	_
Belle	80	_	1.9	_	$0.0\substack{+2.1 \\ -0.0}$	_
BABAR	89	$-0.6^{+0.7}_{-0.5}\pm0.2$	1.2	_	-9.0 ± 8.0	6.5
This result	386	$0.5^{+0.4}_{-0.3}\pm0.1$	0.9	1.5	$5.9^{+4.8}_{-4.1}$	3.8 ± 0.1

$B \rightarrow \omega h$, systematic errors

TABLE XVIII: Summary table of the total systematic errors combined Set I with Set II for the $B^{\pm}/B^{0} \rightarrow \omega h^{\pm}/\omega h^{0}$ decays.

Mode	PDF_fitting	detection b	bias $\omega K^{\pm} \leftrightarrow \omega \pi^{\pm}$	$\operatorname{reconstruction}$	Sum
$\Delta B_r(\omega K^{\pm})$	$^{+0.16}_{-0.03}$	_	$+0.04 \\ -0.03$	± 0.51	$^{+0.54}_{-0.51}$
$\Delta B_r(\omega \pi^{\pm})$	$^{+0.14}_{-0.04}$	_	$+0.01 \\ -0.03$	± 0.43	$^{+0.45}_{-0.43}$
$\Delta B_r(\omega K_S^0)$	$^{+0.06}_{-0.03}$	_	_	± 0.29	$^{+0.30}_{-0.29}$
$\Delta B_r(\omega \pi^0)$	± 0.03	_	_	± 0.04	± 0.05
$\Delta A_{cp}(\omega K^{\pm})$	$^{+0.005}_{+0.003}$	-0.005	$^{+0.001}_{+0.0003}$	_	$^{+0.006}_{-0.005}$
$\Delta A_{cp}(\omega \pi^{\pm})$	$^{+0.01}_{+0.006}$	-0.002	± 0.004	_	$^{+0.012}_{-0.005}$