Radiative and electro-weak penguin decays at Belle

Li Jin (University of Hawaii) Representing the Belle Collaboration DPF2006 + JPS2006

- b \rightarrow d γ
- b \rightarrow sy TCPV
- b \rightarrow s γ inclusive
- $b \rightarrow sl^+l^-$

What's missing:

 $B \rightarrow l^+\nu$; $B \rightarrow l^+l^-$; $B \rightarrow K(*)\nu\nu$; $B \rightarrow K\eta(')\gamma$;

---To be discussed in Leo Piilonen's talk in the "Beyond the SM" session (Wed. 14:30)

Radiative Penguins

- Sensitive to New Physics in the Loop
- Theoretically clean (hadronic uncertainty small) : can be used to measure SM couplings $|V_{ts}|, |V_{td}|$

Belle Detector

Exclusive B mode techniques

4

$b \rightarrow d \gamma$ in exclusive processes

 $b \rightarrow d\gamma$ roles:

•Sensitive to $|V_{td}|$, or $|V_{td}/V_{ts}|$ w.r.t. b \rightarrow s γ .

•Sensitive to New Physics emerging in the transition, since $|V_{td}|$ in SM is strongly suppressed.

•expect Large Direct CPV (penguin + annihilation)

-PRD72,094005(2005)-

Exclusive modes are straightforward experimentally:

$$B^- \to \rho^- \gamma$$
 , $\overline{B}^0 \to \rho^0 \gamma$, $\overline{B}^0 \to \omega \gamma$

(SU(3) breaking effect, annihilation contamination in the charged mode). -PLB595,323(2004)-

$B \rightarrow \rho \gamma$, $B \rightarrow \omega \gamma$ backgrounds

- B \rightarrow K* γ backgrounds (x 30 signal size)
 - $-\Delta E$ distribution shifted low from mis-ID
 - -Particle ID requirements
 - -also is a good control sample for signal shape and cross-check
- Huge Continuum background
 - Likelihood ratio from: Event Shape Fisher discriminant from modified Fox-Wolfram moments, $\cos \theta_B^*$, and Δz
 - Likelihood cut optimized for six individual flavour-tagging bins
- $B \to (\rho, \omega) \pi^0$ and $B \to (\rho, \omega) \eta$ BG
 - π^0,η veto based on π^0,η likelihoods; cut on decay helicity angle of (ρ,ω)
- Other $B \to X_s \gamma$
- Other rare B decays

Selection criteria optimized based by maximizing $N_S / \sqrt{N_B}$

Combined $B \rightarrow (\rho, \omega) \gamma$

Assume isospin relationship: (expected violation less than 10%)

$$\Gamma(B \to (\rho, \omega)\gamma) \equiv \Gamma(B^- \to \rho^- \gamma) = 2\Gamma(\overline{B^0} \to \rho^0 \gamma) = 2\Gamma(\overline{B^0} \to \omega\gamma)$$

Simultaneous fit gives: (first observation)

$$BF(B \rightarrow (\rho, \omega)) = (1.32^{+0.34+0.10}_{-0.31-0.09}) \times 10^{-6} (5.1 \sigma)$$

Toy MC study shows 4.9% of the times has a bigger isospin violation

Constraints on $|V_{td}/V_{ts}|$

Using the Relation:

$$\frac{BF(\overline{B} \to (\rho, \omega)\gamma)}{BF(\overline{B} \to \overline{K}^*\gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \frac{(1 - m_{(\rho, \omega)}^2 / m_B^2)^3}{(1 - m_{K^*}^2 / m_B^2)^3} \zeta^2 [1 + \Delta R]$$

(form factor ratio $\zeta = 0.85 \pm 0.10$ and SU(3) correction $\Delta R = 0.1 \pm 0.1$) Belle obtains:

$$|V_{td}/V_{ts}| = 0.199^{+0.026}_{-0.025} (\exp)^{+0.018}_{-0.015} (\text{theor}).$$

0.142 < $|V_{td}/V_{ts}| < 0.259 (95\% \text{CL})$

Conclusion:

- as expected in SM, no New Physics now.
- CPV study in future.
- quark level transition $b \rightarrow d$ observed and consistent with SM.

9

Time dependent CPV in $B^0 \rightarrow K_s \pi^0 \gamma$

In SM: Photons are mainly left-handed in $b \rightarrow s\gamma$ decay.

expected small S term in SM:

• $f = K^{*0}$, $|S| \sim 0.02$ in SM. (-hep-ph/0609037-) •f can be multibody states with pseudoscalar mesons.

-PRD,71,076003-

•for $f = Ks\pi^0$, |S| < 0.08 in SM. (-PRD,73,014013)

New Physics signal if |S| is larger than expected.

 $B^0 \rightarrow K_{\alpha} \pi^0 \gamma$ selection

Use $M(K_s\pi^0) < 1.8$ GeV events

Continuum supression: Likelihood constructed from •Modified Fox-Wolfram moments (Event Shape) • $\cos(\theta_B)$ •Helicity in K π^0 system for

three different $M(K_s\pi^0)$ regions

Flavor tag quality dependent Likelihood cuts.

CP Asymmetry for $B^0 \rightarrow K_s \pi^0 \gamma$ in Belle

-hep-ex/0608017-

176.4±17 events in Signal Box

Asymmetry plot:

535 Million $B\overline{B}$ For M(Ks π^0)<1.8 GeV $S = -0.10 \pm 0.31 \pm 0.07$ $A = -0.20 \pm 0.20 \pm 0.06$ For K^{*0}(892) resonance region $S = -0.32^{+0.36}_{-0.33} \pm 0.05$ $A = -0.20 \pm 0.24 \pm 0.05$

$b \rightarrow s \gamma$ inclusive

Inclusive $b \rightarrow s\gamma$ measurements.

- Inclusive branching fraction: measure Wilson coefficient C_7 .
- Inclusive photon energy spectrum: input to $|V_{ub}|$ and $|V_{cb}|$ extraction.

-hep-ph/0507253-

• Direct CPV is sensitive to NP in the loop. electroweak penguin diagram

- Inclusive BR(B \rightarrow X_s γ) estimated at NNLO: (-hep-ph/0609232-) BR($\bar{B} \rightarrow X_s \gamma$)=(3.15±0.23)×10⁻⁴ for E_{γ} >1.6 GeV
- First measurement by CLEO in 95, now precise measurements

Full inclusive $b \rightarrow X_s \gamma$ and E_{γ} spectrum ¹⁴

- γ cluster only.
- off-resonance continuum background rejection.
- subtraction of off-resonance and $B \rightarrow X(\pi^0, \eta)$ backgrounds.

Belle Inclusive b \rightarrow s γ measurement

- collect high-energy γ
- continuum rejection by
 - Event Shape (Fox-Wolfram moments, thrust angle)
 - energy flows around the photon axis (3 regions)
- Subtract off-resonance data from on-resonance data spectrum
- Subtract B decay backgrounds(from $\pi^0, \eta, \eta', \omega$ and random clusters)

Subtracted and Eff-corrected

 $BF(b \rightarrow s \gamma) = (3.55 \pm 0.32^{+0.30+0.11}_{-0.31-0.07}) \times 10^{-4}$

Belle 140 fb⁻¹

Belle Inclusive $b \rightarrow s \gamma$ measurement

Photon energy spectrum moment measurement

1st moment $\langle E_{\gamma} \rangle$, 2nd moment $\langle E_{\gamma}^2 \rangle - \langle E_{\gamma} \rangle^2$ are related to mass and momentum of the b quark

- second momentum corrections:
 - B boost at Y(4S) frame.
 - detector resolution and binning.
- bias correction from low energy tail by studying $B \rightarrow K^{*...} \gamma$ MC

Compare with Kagan-Neubert (KN) Prescription -Eur.Phys.J.C7,5(1999)-

Fit to Heavy Quark Expansion

New Physics constraints from $B \rightarrow X_s \gamma BF$

Heavor Flavor Averaging Group, -hep-ex/0603003-

 $BF(B \rightarrow X_s \gamma; E_{\gamma} > 1.6 \,\text{GeV}) = (355 \pm 24^{+9}_{-10} \pm 3) \times 10^{-6}$

Example of a constraint on charged Higgs mass • 95% CL lower limit on the Higgs mass 295 GeV, as a result of the new NNLO calculation • Limit lower now $BR(\overline{B} \rightarrow X_s \gamma; E_{\gamma} > 1.6 \,\text{GeV})$ $=(3.15\pm0.23)\times10^{-4}$

Direct CP asymmetry in $b \rightarrow s\gamma$

$$A_{CP} = \frac{\Gamma(b \to s \gamma) - \Gamma(\overline{b} \to \overline{s} \gamma)}{\Gamma(b \to s \gamma) + \Gamma(\overline{b} \to \overline{s} \gamma)}$$

Very small in SM: -Nucl.Phys.B704,56(2005)-

$$A_{CP}^{SM} = (4.2^{+1.7}_{-1.2}) \times 10^{-3}$$

•Belle 140 fb⁻¹:
$$(2\pm50\pm30)\times10^{-3}$$

•BaBar 82 fb⁻¹: $(25\pm50\pm15)\times10^{-3}$
•CLEo 9.1fb⁻¹: $(-79\pm108\pm22)\times10^{-3}$
HFAG: A_{CP} = $(4\pm37)\times10^{-3}$

-BaBar inclusive: $A_{CP}(B \rightarrow X_{(s+d)}\gamma) = -0.110 \pm 0.115 \pm 0.017$ -Note Possible cancellation of $A_{CP}(B \rightarrow X_s\gamma)$ and $A_{CP}(B \rightarrow X_d\gamma)$

• O_{10} : semileptonic axialvector operator

 $b \rightarrow sll box$

•At leading order, b \rightarrow sll transition depends on O₇, O₉ and O₁₀ only. •At NNLO, $C_i^{\text{eff}} = A_i + \hat{s}$ dependent terms (i=7,9,10; $\hat{s} \equiv m_{ll}^2$) •Inclusive b \rightarrow sll branching fraction constrains C₉ and C₁₀.

Forward-Backward asymmetry in $B \rightarrow K^* l^+ l^{-1}$ In $l^+ l^-$ CM frame: • $\cos\theta_{I^-R} > 0$: Forward • $\cos \theta_{I^- R} < 0$: Backward $A_{FB}(q^2) = \frac{\Gamma(q^2, \cos\theta_{\Gamma B} > 0) - \Gamma(q^2, \cos\theta_{\Gamma B} < 0)}{\Gamma(q^2, \cos\theta_{\Gamma B} > 0) + \Gamma(q^2, \cos\theta_{\Gamma B} < 0)}$ A_{FR} from interference btw vector(C_7 , C_9) and axial vector(C_{10}) couplings <u>-hep-ph/0112300-</u> $\stackrel{\text{ff}}{<} 0.8 \stackrel{\text{f}}{\models} SM (A_7 = -0.330, A_9 = 4.069, A_{10} = -4.213)$ C_{10} A_ < 0 $0.6 \models A_7 A_{10}$ sign flipped case 10 0.4 0.2 ≌ೃ∺ -0.2 both $A_7 A_{10}$ and $A_9 A_{10}$ signs flipped case -0.6 A_0A_{10} sign flipped case -0.8 -1 -5 0 10 12 16 18 20 14 _17P C__(M__) -15 -10a² GeV²/c² C_{0} $|C_{7}|$ is measured from B(b \rightarrow s γ)

$B \rightarrow K^{*}l^{+}l^{-}Reconstruction in Belle$

Extraction of A_{FB} and Wilson coeffs

Fix A to SM value (0.330) and extract A_9/A_7 and A_{10}/A_7 from an unbinned maximum likelihood fit, with double differential decay width $g(q^2,\theta) = d^2\Gamma/dq^2d\cos\theta$ as PDF.

$$A_{FB}(q^2) = \frac{\int_{-1}^{1} \operatorname{sgn}(\cos\theta) g(q^2,\theta) dq^2}{\int_{-1}^{1} g(q^2,\theta) d\cos\theta dq^2}$$

Event categories:

signal, correctly and incorrectly tagged cross-feeds from $B \rightarrow K^{(*)}l^+l^$ dilepton background(80%),K*lh background (h=K, π) (17%), K*hh and ψ background

Null test with K⁺l⁺l⁻

 $A_{FB}(B^+ \rightarrow K^+ l^+ l^-) = 0.10 \pm 0.14 \pm 0.01$

consistent with zero

Fit Results and Confidence Contours

-40

-20

0

20

40

 A_{o}/A_{7}

Summary

- •b \rightarrow d γ : Observation of a new quark level b to d transition.
 - $|V_{td}/V_{ts}|$ consistent with $B_S \overline{B}_S$ Mixing and CKM fit.
- •b \rightarrow s γ TCP : Error on S,A from B⁰ \rightarrow K_s $\pi^{0}\gamma$ reduced, consistent with zero.
- •b→sγ inclusive : HFAG average agrees with SM. Measured HQE parameters and constrains charged Higgs mass.
- •b \rightarrow sl⁺l⁻: Fit to B \rightarrow K*ll A_{FB}(q²) gives Wilson coeffs
 - •Large forward-backward asymmetry observed
 - •No New Physics with positive $A_9^*A_{10}$

Backup

Semi-Inclusive $B \rightarrow X_s \gamma$ measurement

- Reconstruct as many modes as possible
- Photon energy resolution 1~5 MeV, while Full inclusive ~45 MeV

Moments

- Observables to be directly compared with predictions.

- Universal parameters in operator product expansion (several available schemes: kinetic scheme, shape function scheme).

- Kinetic scheme: evaluate m_b (b quark mass) and μ_{π}^2 (Fermi momentum) from a fit to spectrum. - M. Neubert PLB **612**, 13 (2005) -

$B \rightarrow X_s \gamma$ branching fraction

- All measurements scaled to $E_{\gamma} = 1.6 \text{GeV}$ (where theory predictions stands -avoid dependence on heavy quark distribution function-)

- Then average BF is calculated
- Heavy Flavor Averaging Group (HFAG), hep-ex/0603003-

 $BF(B \rightarrow X_{s} \gamma; E_{\gamma} > 1.6 \text{ GeV}) = (355 \pm 24^{+9}_{-10} \pm 3) \times 10^{-6}$

OPE and Wilson Coefficient

• Effective Hamiltonian is expressed in term of Operator Product Expansion.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

- O_{1,2}: current current operator
- O₃₋₆: QCD penguin operator
- O_{7,8}: electro- and chromo-magnetic operator
- $O_{9,10}$: semileptonic operator
- C_i: Wilson coefficient
- Each Wilson coefficient is the strength of a corresponding short distance operator.
- Precise measurement of Wilson coeffs. is one \mathcal{O}_{10} of the goals for B physics.
- For $b \rightarrow s\gamma$ and $b \rightarrow sll$, only O_7 , O_9 and O_{10} appear in the Hamiltonian.

New Physics changes the Wilson Coefficients

$$\mathcal{O}_{1} = (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta})(\overline{c}_{\beta}\gamma^{\mu}Lb_{\alpha}),$$

$$\mathcal{O}_{2} = (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\alpha})(\overline{c}_{\beta}\gamma^{\mu}Lb_{\beta}),$$

$$\mathcal{O}_{3} = (\overline{s}_{\alpha}\gamma_{\mu}Lb_{\alpha})\sum_{q=u,d,s,c,b}(\overline{q}_{\beta}\gamma^{\mu}Lq_{\beta}),$$

$$\mathcal{O}_{4} = (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\overline{q}_{\beta}\gamma^{\mu}Rq_{\alpha}),$$

$$\mathcal{O}_{5} = (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\overline{q}_{\beta}\gamma^{\mu}Rq_{\alpha}),$$

$$\mathcal{O}_{6} = (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\overline{q}_{\beta}\gamma^{\mu}Rq_{\alpha}),$$

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}}\overline{s}_{\alpha}\sigma_{\mu\nu}(m_{s}L + m_{b}R)b_{\alpha}F^{\mu\nu},$$

$$\mathcal{O}_{8} = \frac{g}{16\pi^{2}}\overline{s}_{\alpha}\gamma^{\mu}Lb_{\alpha}\overline{\ell}\gamma_{\mu}\ell,$$

$$\mathcal{O}_{9} = \frac{e^{2}}{16\pi}\overline{s}_{\alpha}\gamma^{\mu}Lb_{\alpha}\overline{\ell}\gamma_{\mu}\gamma_{5}\ell,$$

$B \rightarrow \rho \gamma$ and $B \rightarrow \omega \gamma$ analysis

More specific background suppression (Belle's analysis)

- 1. π^0 and $\eta \rightarrow \gamma \gamma$ rejection (copious!)
- 2. K^* veto in $M(K''\pi)$ (to suppress $B \to K^*\gamma$)
- 3. Helicity angle of ρ/ω decay (discriminate $\rho\gamma vs \rho\pi^0$, etc)
- 4. B meson direction $(1 \cos^2 \theta_B \text{ for } \Upsilon(4S) \rightarrow B\overline{B})$
- 5. Vertex displacement (Δz) from other $B (\Delta z \sim 0 \text{ for } q\overline{q})$
- 6. Flavor-tag algorithm of the other B ($q\overline{q}$ is neither B or \overline{B} -like)

 Combine 4, 5 and event-shape Fisher into a likelihood ratio, and flavor-tag quality dependent cut on it (BaBar uses neural net)

 $\Leftarrow \Delta z \text{ for signal} \\ and continuum$

Flavor-tag quality \Rightarrow

Contour and Systematic for $B^0 \rightarrow K_s \pi^0 \gamma$

category	S	\mathcal{A}
physics	0.009201	0.012314
background Δt	0.007177	0.003541
flavor tagging	0.007120	0.004745
signal fraction	0.060995	0.032658
fit bias	0.005853	0.003742
resolution function	0.025238	0.009851
vertex reconstruction	0.009238	0.021139
tag-side interference	0.002000	0.041000
sum	0.068321	0.059094

TABLE XIV: $[K_S^0 \pi^0 \gamma]$ Systematic Error Summary