Measurements of Exclusive Charmless *B* Decays Related to $\Delta S_{\phi K^0}$ and $\Delta S_{\eta' K^0}$ at BaBar

Feng Liu

University of California, Riverside Representing the BABAR Collaboration DPF 2006 & JPS 2006, Honolulu, Hawaii October 29 - November 3, 2006

Modes Covered

• Modes covered and data sample used

Modes	Data $(Bar{B})$	Reference
$B^0 ightarrow \eta K^0$, $\eta\eta$, $\eta'\eta'$, $\eta\phi$, $\eta'\phi$	324 M	PRD 74 , 051106(R) (2006)
$B^0 o \eta \eta^\prime$, $\eta^\prime \pi^0$, $\eta \pi^0$	232 M	PRD 73 , 071102(R) (2006)
$B o \phi \pi$	232 M	PRD 74 , 011102(R) (2006)
$B^0 ightarrow \overline{K}^{*0} K^0$ †	232 M	PRD 74 , 072008 (2006)

[†] First search, others updates

• Submodes included:

$$\begin{array}{ll} K^0 \to K^0_S(\pi^+\pi^-) & \pi^0 \to \gamma\gamma & \phi \to K^+K^- \\ \eta_{3\pi} \to \pi^+\pi^-\pi^0 & \eta_{\gamma\gamma} \to \gamma\gamma & \overline{K}^{*0} \to K^-\pi^+ \\ \eta'_{\eta\pi\pi} \to \eta_{\gamma\gamma}\pi^+\pi^- & \eta'_{\gamma\rho} \to \gamma\rho^0 & \rho^0 \to \pi^+\pi^- \end{array}$$

• All submodes are combined to obtain final results:

Motivations

- Motivation: difference of $\mathcal{A_{CP}}$ for $b \rightarrow s\bar{s}s$ penguin processes and $b \rightarrow c\bar{c}s \ (\Delta S = S_f - \sin 2\beta \sim 3\sigma$ difference)
 - \diamond Sensitive to
 - a) New Physics b) SM polution $(b \rightarrow u)$;
 - $\diamond \ B^0 \to \eta^{(\prime)} X, \ \phi X \ \text{and} \ K^* K \ \text{help} \\ \text{understand the SM polution for} \\ S_{\phi K^0} \ \text{and} \ S_{\eta' K^0}.$

• Theoretical interest: $SU(3)_f$, QCDF, soft collinear eff. theory:

DPF 2006 & JPS 2006, Honolulu, Hawaii

Analysis Strategy

- Reconstructed B (PID applicable) (ΔE , M_{ES}/M_B)
- Event shape: continuum \sim jetlike, $B\bar{B}\sim$ isotropic

 $q\bar{q}$: $|\cos heta_T|$ peak near 1, $B\bar{B}$: flat in CMS

• Build standard unbinned maximum likelihood:

$$\mathcal{L} = \frac{1}{N!} \exp\left(-\sum_{j} n_{j}\right) \prod_{i=1}^{N} \left[\sum_{j} n_{j} \mathcal{P}_{j}(\vec{\mathbf{x}}_{i}, \vec{\alpha}_{j})\right]$$

- $$\begin{split} N &= \sum_{j} n_{j}: \text{ total events} \#, \ n_{j}: \text{ events} \# \text{ of the } j^{th} \text{ component } (j \geq 3), \\ \vec{\mathbf{x}}: \text{ variables } (M_{ES}/M_{B}, \Delta E, \text{ event shape } (\mathcal{F}), \ M_{R}, \cos \theta_{V}...), \\ \vec{\alpha}_{j}: \text{ parameters for probability density functions (PDFs),} \\ \mathcal{P}_{j}(\vec{\mathbf{x}}_{i}): \text{ probability of event } i \text{ to be component } j. \end{split}$$
- Corrected bias if applicable due to correlations between variables neglected in ML (for detail, see references).

4

$B^0 \rightarrow$	$\eta\pi^0$,	$\eta'\pi^0$	and	$\eta\eta^\prime$
	•	•		•••

Mode	$\mathcal{B}~(imes 10^{-6})$	$\mathcal{S}(\sigma)$	UL(CL=90%)
$\eta\pi^0$	$0.6^{+0.5}_{-0.4}\pm 0.1$	1.3	< 1.3
$\eta'\pi^0$	$0.8^{+0.8}_{-0.6}\pm0.1$	1.4	< 2.1
$\eta\eta'$	$0.2^{+0.7}_{-0.5}\pm0.4$	1.3	< 1.7

- PRD 73, 071102(R) (2006)
- constrain $\Delta S_{\eta' K^0}$

• e.g.
$$B^0 \rightarrow \eta'_{\eta\pi\pi}\pi^0 \Rightarrow$$

 $\circ \mathcal{B} = (0.8^{+0.8}_{-0.6} \pm 0.1) \times 10^{-6}$ measured

 \circ assumed $\mathcal{B} = 50 \times 10^{-6}$ (red lines X62.5)

• consistent with BELLE

Mode	$\mathcal{B}~(imes 10^{-6})$	$\mathcal{S}(\sigma)$	UL(CL=90%)
$\eta\pi^0 \ \eta'\pi^0$	$\frac{1.2\pm0.7\pm0.1}{2.79^{+1.02+0.25}_{-0.96-0.34}}$	1.8 3.1	< 2.5

PRD **71**, 091106(R) (2005)

$B^0 \to \eta K^0$, $\eta \eta$, $\eta \phi$, $\eta' \phi$, and $\eta' \eta'$

Events / 2 Me^v

				_ \
Mode	$\mathcal{B}(10^{-6})$	$\mathcal{S}(\sigma)$	UL(CL=90%)	۷
ηK^0	$1.8^{+0.7}_{-0.6}\pm 0.1$	3.6	< 2.9	20
$\eta\eta$	$1.1^{+0.5}_{-0.4}\pm 0.1$	3.1	< 1.8	15 10
$oldsymbol{\eta} oldsymbol{\phi}$	$0.1\pm0.2\pm0.1$	_	< 0.6	5
$\eta'\phi$	$0.2^{+0.4}_{-0.3}\pm 0.1$	0.5	< 1.0	20- (
$\eta'\eta'$	$1.0^{+0.8}_{-0.6}\pm 0.1$	1.8	<mark>ح 2.4 م</mark> ن	10
				·

- PRD 74, 051106(R) (2006)
- constrain $\Delta S_{\eta'K^0}$ and $\Delta S_{\phi K^0}$

agreement with BELLE • good (hep-ex/0608033, PRD, **71** 091106 (2005))

Mode	$\mathcal{B}~(imes 10^{-6})$	$\mathcal{S}(\sigma)$	UL(CL=90%)
ηK^0	$1.1\pm0.4\pm0.1$	2.9	< 1.9
$\eta\eta$	$0.7^{+0.7}_{-0.6}\pm 0.1$	1.1	< 2.0

0.2

$$B \to \phi \pi$$

• $B^0 \rightarrow \phi \pi^0$ (left), $B^+ \rightarrow \phi \pi^+$ (right)

Feng Liu, University of California, Riverside DPF 2006 & JPS 2006, Honolulu, Hawaii

$$B \to \overline{K}^{*0} K^0$$

• First search for
$$B \rightarrow \overline{K}^{*0} K^0$$

$$\begin{array}{ccc} \mathcal{B}(\times 10^{-6}) & \mathcal{S}(\sigma) & \text{UL(CL=90\%)} \\ \textbf{0.2^{+0.9+0.1}_{-0.8-0.3}} & \textbf{0.3} & < \textbf{1.9} \end{array}$$

- PRD 74, 072008 (2006)
- constrain $\Delta S_{\phi K^0}$

Summary of Results

 \bullet Comparison with the previous BABAR and BELLE results

Constraints on ΔS

• Grossman *et al.*: $|\Delta S| \equiv |S - \sin 2\beta| = 2\cos 2\beta \sin \gamma \cos \delta |\boldsymbol{\xi}|$ where $\boldsymbol{\xi} \equiv \frac{V_{ub}^* V_{us}}{V_{cb}^* V_{cs}} \frac{a^u}{a^c}$ (PRD 68,015005 (2003)) SU(3) relates $a_f^{c,u}$ of $A_f \equiv A(B^0 \rightarrow f) = V_{cb}^* V_{cs} a_f^c + V_{ub}^* V_{us} a_f^u$ to sum of $b_{f'}^{c,u}$ of non-s. amp. $A_{f'} \equiv A(B^0 \rightarrow f') = V_{cb}^* V_{cd} b_{f'}^c + V_{ub}^* V_{ud} b_{f'}^u$ to obtain bound on $\hat{\boldsymbol{\xi}} \equiv \left| \frac{V_{us}}{V_{ud}} \times \frac{V_{cb}^* V_{cd} a^c + V_{ub}^* V_{ud} a^u}{V_{cb}^* V_{cs} a^c + V_{ub}^* V_{us} a^u} \right| = \left| \frac{\boldsymbol{\xi}_f + (V_{us} V_{cd})/(V_{ud} V_{cs})}{1 + \boldsymbol{\xi}_f} \right|$ in terms of Br's or UL's as

$$\begin{split} \hat{\xi}_{\eta'K^{0}} | &\leq \left| \frac{V_{us}}{V_{ud}} \right| \left\{ 0.59 \sqrt{\frac{\mathcal{B}(\eta'\pi^{0})}{\mathcal{B}(\eta'K^{0})}} + 0.33 \sqrt{\frac{\mathcal{B}(\eta\pi^{0})}{\mathcal{B}(\eta'K^{0})}} + 0.14 \sqrt{\frac{\mathcal{B}(\pi^{0}\pi^{0})}{\mathcal{B}(\eta'K^{0})}} \right. \\ &\left. + 0.53 \sqrt{\frac{\mathcal{B}(\eta'\eta')}{\mathcal{B}(\eta'K^{0})}} + 0.38 \sqrt{\frac{\mathcal{B}(\eta\eta)}{\mathcal{B}(\eta'K^{0})}} + 0.96 \sqrt{\frac{\mathcal{B}(\eta\eta')}{\mathcal{B}(\eta'K^{0})}} \right\}. \end{split}$$

 $\beta, \gamma(\delta)$ weak (strong) phase

- We find $|\Delta S_{\eta' K^0}| < 0.15$ (0.22 formerly) for $S_{\eta' K^0}$ @CL=90%
- Gronau et. al., $C_{\eta'K^0}$ and $S_{\eta'K^0} 0.133 < \Delta S_{\eta'K^0} < 0.152$ (6 modes) and $-0.046 < \Delta S_{\eta'K^0} < 0.094$ ($\eta \pi^0, \eta' \pi^0$ and $\eta \eta'$, see hep-ph/0608085)

ΔS for ϕK^0

• $\Delta S_{\phi K^0}$

$$\begin{split} \hat{\xi}_{\phi K^{0}} &\leq \left| \frac{V_{us}}{V_{ud}} \right| \left\{ \frac{1}{2} \left[\frac{\mathcal{B}(\overline{K}^{*0}K^{0}) + \mathcal{B}(K^{*0}\overline{K}^{0})}{\mathcal{B}(\phi K^{0})} \right] + \frac{\sqrt{6}}{4} \left[\frac{t\mathcal{B}(\phi\eta) + s\mathcal{B}(\phi\eta')}{\mathcal{B}(\phi K^{0})} \right] \right. \\ &\left. \frac{\sqrt{3}}{4} \left[\frac{t\mathcal{B}(\omega\eta) + s\mathcal{B}(\omega\eta')}{\mathcal{B}(\phi K^{0})} \right] + \frac{\sqrt{3}}{4} \left[\frac{t\mathcal{B}(\rho^{0}\eta) + s\mathcal{B}(\rho^{0}\eta')}{\mathcal{B}(\phi K^{0})} \right] \right. \\ &\left. \frac{1}{4} \left[\frac{\mathcal{B}(\rho^{0}\pi^{0}) + \mathcal{B}(\omega\pi^{0})}{\mathcal{B}(\phi K^{0})} \right] + \frac{1}{2\sqrt{2}} \frac{\mathcal{B}(\phi\pi^{0})}{\mathcal{B}(\phi K^{0})} \right\} \\ &t \equiv \cos \theta_{\eta\eta'} = 0.94, s = \sin \theta_{\eta\eta'} = 0.34 \text{ with } \theta_{\eta\eta'} = 20^{0} \end{split}$$

• We find the first constraint $(SU(3)_f) |\Delta S_{\phi K^0}| < 0.38$ for $S_{\phi K^0}$ @ CL=90%

- consistent with the constraints
- Both charmless S and constraints on ΔS need further improvement $S_{J/\psi K^0} \sim 5\%$, $S_{\eta' K^0} \sim 14\%$ $S_{\phi K^0} \sim 50\%$

11

Summary

• Improved ULs for $B \to VP/PP$ ($\Delta S = S_f - \sin 2\beta$ for $\mathcal{A}_{CP}^{\eta' K^0}$ and $\mathcal{A}_{CP}^{\phi K^0}$)

Modes	Reference		
$B^0 ightarrow \eta K^0$, $\eta\eta$, $\eta'\eta'$, $\eta\phi$, $\eta'\phi$	PRD 74 , 051106(R) (2006)		
$B^0 o \eta \eta^\prime$, $\eta^\prime \pi^0$, $\eta \pi^0$	PRD 73 , 071102(R) (2006)		
$B o \phi \pi$	PRD 74, 011102(R) (2006)		
$B^0 \to \overline{K}^{*0} K^0$	PRD 74 , 072008 (2006)		

- Much tighter constraint on $|\Delta S_{\eta'K^0}| < 0.15$ (0.22 formerly) for $S_{\eta'K^0}$ @CL=90%
- We find the first constraint $|\Delta S_{\phi K^0}| < 0.38$ for $S_{\phi K^0}$ @ CL=90%
- $S_{\eta'K^0}$ and $S_{\phi K^0}$ consistent with current constraints.

12

Summary of the Results

• BABAR results (blue), BELLE (black)

Mode	$\mathcal{S}(\sigma)$	$\mathcal{B}(10^{-6})$	UL $((10^{-6})$	previous	Reference
$B^0 o \eta K^0$	3.6	$1.8^{+0.7}_{-0.6}\pm 0.1$	< 2.9	< 2.5	PRD 74, 051106 (2006)
	2.9	$1.1 \pm 0.4 \pm 0.1$	< 1.9		hep-ex/0608033
$B^0 o \eta\eta$	3.1	$1.1^{+0.5}_{-0.4}\pm 0.1$	< 1.8	< 2.8	
	1.1	$0.7^{+0.7}_{-0.6}{\pm}0.1$	< 1.9		PRD 71 , 091106 (2005)
$B^0 o \eta' \eta'$	1.8	$1.0^{+0.8}_{-0.6}\pm 0.1$	< 2.4	< 10	
$B^0 o \eta \phi$	0.0	$0.1\pm0.2\pm0.1$	< 0.6	< 1.0	
$B^0 o \eta' \phi$	0.5	$0.2^{+0.4}_{-0.3}\pm 0.1$	< 1.0	< 4.5	
$B^0 o \eta \eta^\prime$	0.4	$0.2^{+0.7}_{-0.5}\pm0.4$	< 1.7	< 4.6	PRD 73, 071102 (2006)
$B^0 o \eta \pi^0$	1.3	$0.6^{+0.5}_{-0.4}\pm 0.1$	< 1.3	< 2.5	
	1.8	$1.2 \pm 0.7 \pm 0.1$	< 2.5		PRD 71 , 091106 (2005)
$B^0 o \eta' \pi^0$	1.4	$0.8^{+0.8}_{-0.6}\pm 0.1$	< 2.1	< 3.7	
	3.1	$2.79_{-0.96-0.34}^{+1.02+0.25}$			PRL 97 , 061802 (2006)
$B^0 o \phi \pi^0$	—	$0.12\pm0.13^{+0.03}_{-0.04}$	< 0.28	< 0.41	PRD 74, 011102 (2006)
$B^+ o \phi \pi^+$	_	-0.04 \pm 0.17 $^{+0.04}_{-0.04}$	< 0.24	< 1.0	
$B^0 ightarrow \overline{K}^{*0} K^0$	0.3	$0.2\substack{+0.9+0.1\\-0.8-0.3}$	< 1.9		PRD 74 , 072008 (2006)