

do/dy Distribution of Drell-Yan Dielectron Pairs at CDF Run II

Jiyeon Han (University of Rochester) For the CDF Collaboration

> DPF + JPS October, 30, 2006 Honolulu, Hawaii

Oct, 30, 2006

Outline

- Introduction
- CDF Run II detector
- Event selection
- Acceptance and efficiency
- Silicon tracking efficiency
- Background estimation
- Systematic uncertainty
- Run II result
- Summary

CDF Run II Detector

Silicon Tracking Detectors
Central Drift Chamber
Solenoid Coil /TOF
EM Calorimeter
Hadronic Calorimeter
Muon Drift Chambers
Muon Scintillator Counters

Plug calorimeter covers high η region(~ 3.6)
Silicon track covers |η| < 2.8

*****Silicon tracking reduces background contamination

Introduction

• Parton momentum fractions $(x_{1,2})$ determine rapidity (y) of Z boson

- The measurement of high y region probes high x region
- Z boson decays to two forward electron corresponds to high y
- dσ/dy measurement tests PDF predictions

Data set

- Data sample : ~1.1 fb⁻¹
 - Inclusive single central electron trigger
 - Two electron trigger (central or forward)
 - Trigger efficiency measured as a function of electron E_T
 - Overall trigger efficiency ~ 100 %

Total trigger efficiency Zcc : 1.0 Zcp : 0.994±0.001 Zpp : 0.995±0.001

Oct, 30, 2006

Selection

- Z selection with two central electrons : Zcc
 - Kinematic selection : $E_T \ge 25 \text{ GeV}$, $|\eta| < 1.1$
 - Two electrons with tight and loose ID
 - Opposite charge electrons required

- Z selection with a central and forward electron : Zcp
 - − Kinematic selection : $E_{T^{\geq}}$ 20 GeV

 $|\eta| < 1.1$ for central, $1.2 < |\eta| < 2.8$ for plug

- One tight central electron and one plug electron
- Z selection with two forward electrons : Zpp
 - Kinematic selection : $E_{T} \geq 25 \; GeV$, 1.2 < $l\eta l$ < 2.8
 - Two plug electrons

Oct, 30, 2006

- Same side events required
- One leg must have a silicon track

Acceptance and Efficiency

Acceptance × Efficiency in rapidity

Geometric and kinematic acceptances modeled using Pythia MC and GEANT detector simulation

✤ MC tuned to data
 ⇒ Energy resolution and scale
 ⇒ Electron ID efficiency

	Zcc	Zcp	Zpp
Acceptance	0.113±0.001	0.239±0.001	0.100±0.001
Efficiency	0.911±0.002	0.702±0.005	0.733±0.010

• A × E is flat up to y ~ 2.0 and non-zero to y ~ 2.9 by adding PP region

Silicon tracking efficiency I

- One Silicon track required in Zpp to reduce the background
- There is a discrepancy between the data and MC silicon track finding efficiencies
 - Data/MC efficiency ratio (scale factor) as a function of Z vertex and η

Scale factors applied to MC on event by event basis

Silicon tracking efficiency II

- Measure the effects of the selection efficiency of requiring at least one silicon track as a function of the boson rapidity in Zpp
- Determined from corrected MC
- Total tracking efficiency is 0.845

Backgrounds for Z/γ^{*} : QCD

- Largest background : QCD dijets
- Magnitude obtained from fit to electron isolation distribution
 - Isolation defined as energy contained in a $\Delta R=0.4$ cone around an electron minus the energy of the electron itself
 - Fit isolation distribution for both signal and background contributions
 - Extrapolate the background from high Isolation tail into the signal region

region	QCD background (%)
Zcc	0.38±0.08(stat.)±0.12(sys.)
Zcp	0.65±0.08(stat.)±0.21(sys.)
Zpp	2.62±0.22(stat.)±0.82(sys.)

Backgrounds for Z/γ^{*} : EWK

- EWK background processes
 - Estimated using Pythia MC

process	Zcc	Zcp	Zpp	Total
WW	10.3±0.7	11.5±0.8	1.7±0.1	23.4±1.1
WZ	18.0±1.2	22.7±1.5	6.3±0.4	46.9±2.0
ttbar inclusive	5.0±0.4	3.4±0.3	0.2±0.1	8.6±0.5
W+jet	2.4±1.1	13.2±2.7	3.9±1.3	19.5±3.2

Systematic study

- Systematic uncertainties determined for
 - Detector material modeling
 - Background estimates
 - Electron identification efficiencies
 - Silicon tracking efficiency

 Largest systematic uncertainties associated with measurement of silicon tracking efficiencies

do/dy distribution l

dσ/dy distribution of Z/γ^{*} (positive and negative rapidity region)

- No PDF or luminosity uncertainties included
- σ of positive and negative rapidity is consistent

do/dy distribution II

dσ/dy distribution of Z/γ*

NNLO calculation with NLO CTEQ6.1 PDF
σ (Z→ee) : 265.9± 1.0(stat.)±1.1(sys.) pb
No PDF or luminosity uncertainties included

do/dy distribution (data/theory)

NLO calculation with NLO MRST PDF
The data/theory(nlo mrst) of do/dy
1.15
1.15
1.15
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95

NLO calculation with NLO CTEQ PDF

The data/theory(nlo cteq) of do/dy

Summary

- We measure $d\sigma/dy$ distribution of $Z/\gamma^* \rightarrow e^+e^-$ up to $y \sim 2.9$
- Total cross section = 265.9 ± 1.0(*stat.*) ± 1.1(*sys.*) *pb*
 - No PDF or luminosity uncertainties included
- Measured do/dy shape best matches NNLO calculation with NLO CTEQ6.1 PDF
- need to reduce the systematic uncertainty from silicon tracking

Runl result

 $\sigma \times Br(\gamma^*/Z \rightarrow e^+e^-) = 252 \pm 11pb$

PDF predictios

Oct, 30, 2006

- ✓ LO CTEQ4 PDF
- ✓ NLO CTEQ4 PDF
- d quark enhanced modified
 NLO CTEQ4 PDF
- NLO gluon resummated calculation with CTEQ4 PDF

• not enough to make a distinction better PDF

Z mass and Et distribution

Z mass and electron Et distribution (data, MC)

•

