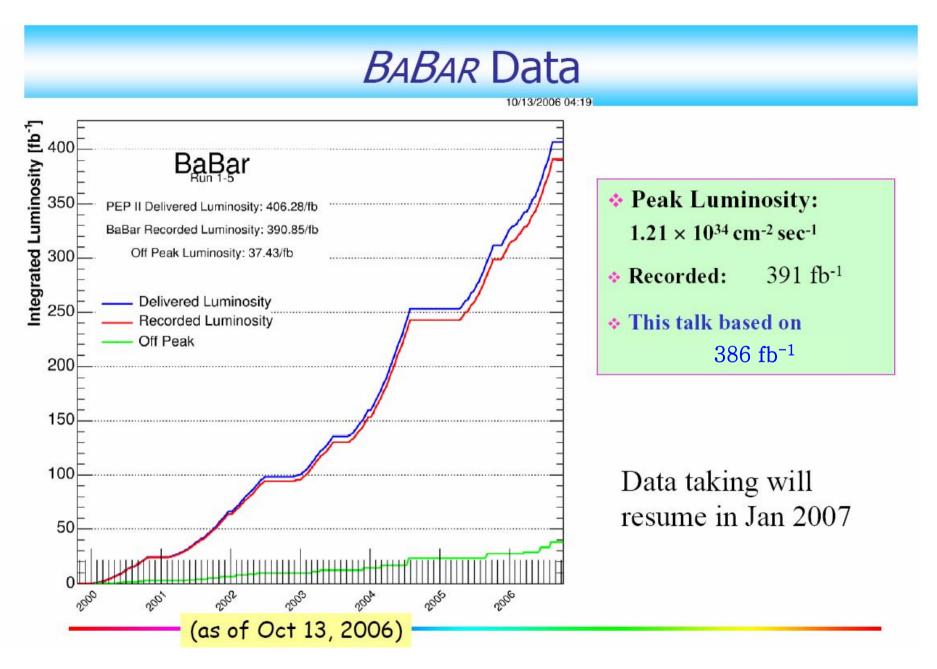
Prompt χ_{c1} , χ_{c2} and X(3872) Production in e⁺e⁻ annihilation

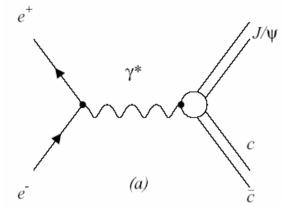
Woochun Park University of South Carolina

BABAR Representing the BaBar Collaboration

DPF 2006 + JPS 2006 @Honolulu, Hawaii October 30, 2006

Introduction


- We've heard a lot of exciting news about charmonium production in e⁺e⁻ annihilation so far from B-factories:
 - Prompt J/ψ and $\psi(25)$ production is observed.
 - Double charmonium production observed with M_{rec} against J/ψ .
 - X(3872), Z(3930), Y(3940), Z(3940), and Y(4260) observed
 - These are great tools to test NRQCD.
- Question:

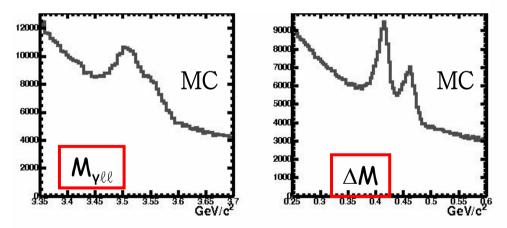

Why have χ_{c1} and χ_{c2} not been observed yet in the continuum?

- In B decay, inclusive BF is 1.09% (J/ ψ), 0.31% (ψ (25)), 0.39%(χ_{c1}), 0.14%(χ_{c2}).
- In e⁺e⁻ annihilation, J/ψ , ψ (25), χ_{c0} found but not χ_{c1} , χ_{c2} yet.
- Search for $\chi_{c1,2}$ with the dominant BF process $\gamma J/\psi$
 - → 36% for χ_{c1} and 20% for χ_{c2} .

BELLE PRL2002 (33fb⁻¹)
$$\sigma(e^+e^- \to \chi_{c1}X) < 0.35 \ \sigma(e^+e^- \to \chi_{c2}X) < 0.66$$
 pb

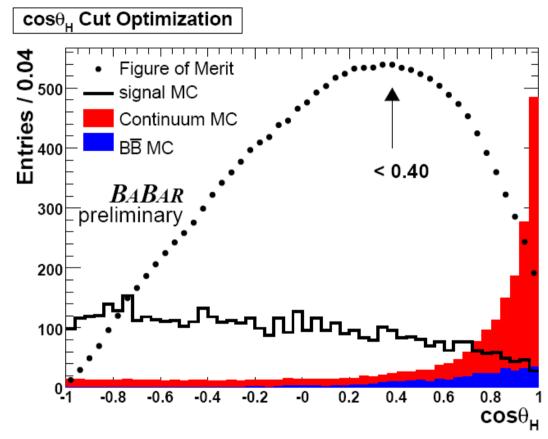
- Search for X(3872) $\rightarrow \gamma J/\psi$ in continuum.
 - X(3872) observed in B-decay.
 - Take advantage of the machinery for χ_c .

MC Samples


- Double-charmonium MC ($\gamma^{\star}\to \chi_c~J/\psi~or~\psi(2S)$) is used as our signal MC.
- To estimate signal detection efficiency inclusively, we use single χ_c and X(3872) MC generated flat distribution over $\cos\theta^*$ and p^* up to 5 GeV/c.
- The χ_c from B decays are used as a control sample to validate data-to-MC comparison.
- BB MC is used to estimate BB background.
- For the X(3872) search, we take advantage of the χ_c study because of similar kinematics.

Event Selection (I)

- N_{ch} > 4 and R₂ < 0.8 to suppress QED type of backgrounds : ISR ψ(2S) and two-photon fusion events.
- Qualified photon candidate must satisfy:
 - $A_{42} < 0.1$: A_{42} measures the azimuthal asymmetry of the cluster about its peak, distinguishing electromagnetic from hadronic showers.
 - 0.01 < LAT < 0.5: LAT is a measure of the radial energy profile of the cluster and is used to suppress clusters from electronic noise or hadronic interactions.
 - $0.41 < \theta < 2.41$: Photons in electromagnetic calorimeter fiducial volume (polar angle to the beam axis).
 - Reject γ from π^0 if $M_{\pi 0} \in [0.114, 0.146]$ GeV with E_{γ} = 30MeV, Lat < 0.8
 - Splitoff rejection by requiring at least 9° from any charged track.


Event Selection (II)

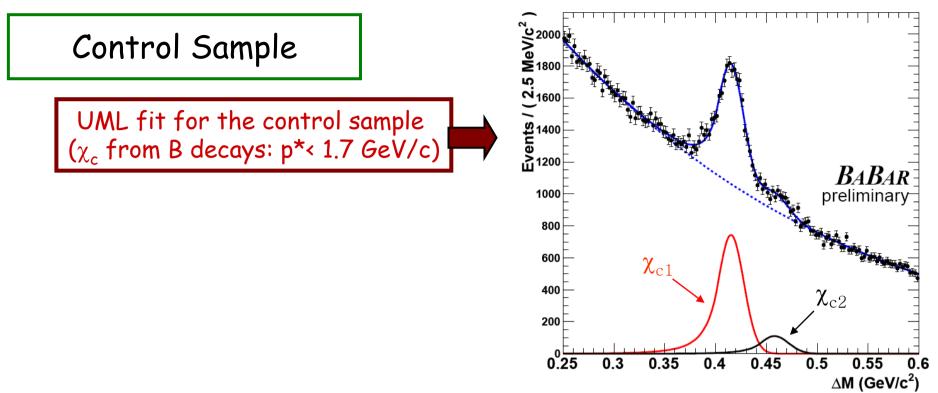
- $p^*(\chi_c, J/\psi) > 2.0$ GeV/c to suppress B-decay contribution.
- Electron id with radiation recovery. Muon identification.
- Geometric constraint on the J/ψ vertex and J/ψ mass constraint.
- -0.05 < M_{ee} $M_{J/\psi}$ < 0.03 GeV and -0.03 < $M_{\mu\mu}$ $M_{J/\psi}$ < 0.03 GeV.
- $|\cos\theta_{\rm H}(J/\psi)| < 0.9$
- + 0.25 < Δ M (M_{xll} M_{ll}) < 0.60 GeV for the χ_c search
 - More efficient variable than $M_{\chi \ell \ell}$ to discriminate χ_{c1} from χ_{c2} .

• 0.60 < $\Delta M (M_{gll} - M_{ll})$ < 0.95 GeV for the X(3872) search

Event Selection (III)

 $cos\theta_H(\chi_c) < 0.40$

- The figure of merit is $N_{sig}^2/(N_{cont}+N_{BB})$ for the individual cut.
- The optimized cut is not sensitive to the scale of N_{siq} .


Unbinned ML Fit

CBL Parameterization from MC.

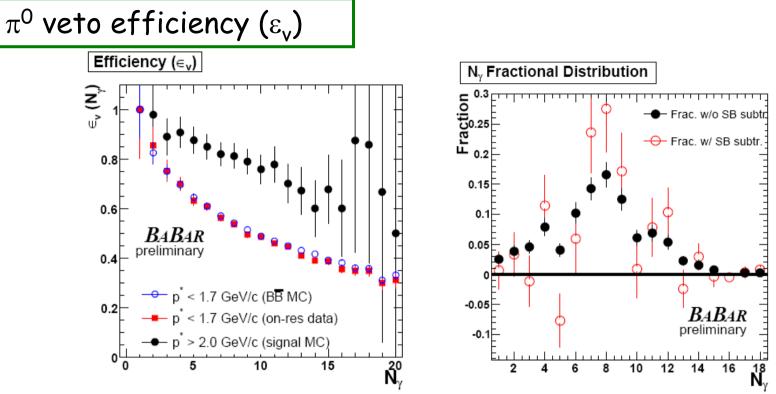
$e^+e^- \rightarrow \chi_c X$	m (MeV)	σ (MeV)	α	n
χ_{c1}	412.5	14.0	1.079	4.130
χ_{c2}	458.7	15.3	1.056	4.843
X(3872)	773.0	20.5	0.984	5.003

- Signal PDF
 - Crystal Ball Line shape (CBL).
 - Mass difference between χ_c is constrained to PDG 2006 value, 45.5 MeV.
 - <u>To account for possible energy scale or resolution difference between</u> <u>data and MC</u>, mean is shifted by an offset and resolution is scaled by <u>scale factor</u>. It's tuned by our control sample (see the next page).
- Background PDF
 - 3rd order Chebyshev polynomial with all parameters floated.
 - For the purpose of systematic error study, Exponential function is used.

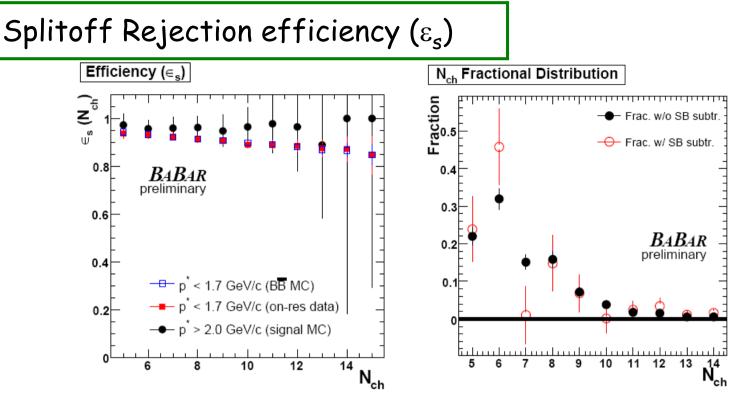

$e^{-[p_0+p_1(\Delta M)+p_2(\tilde{\Delta}M)^2]}$

- To tune offset and scale, we performed an UML fit for the control sample, χ_c from B decays (p* < 1.7 GeV/c).
- To cross check, $N(\chi_{c2})$ to $N(\chi_{c1})$ ratio is calculated and it is consistent with PDG2006.
- These values (offset and scale) will be used and fixed in the UML fit to search for χ_c and X(3872) in continuum (p* > 2.0 GeV/c).

$$\epsilon = \epsilon_r \cdot \epsilon_v \cdot \epsilon_s \cdot f_{N_{trk}}$$


 $\begin{array}{l} \epsilon_r: \mbox{Reconstruction efficiency is estimated by single χ_c MC.$\\ \hline $\epsilon_v: Survival rate under π^0 veto$\\ \hline $\epsilon_s: Survival rate under splitoff rejection$\\ \hline $f_{N_{trk}}: Fraction of signal events that pass $N_{trk} > 4$ cut$\\ \hline $(we assume f_{Ntrk} = 1.0)$\\ \end{array}$

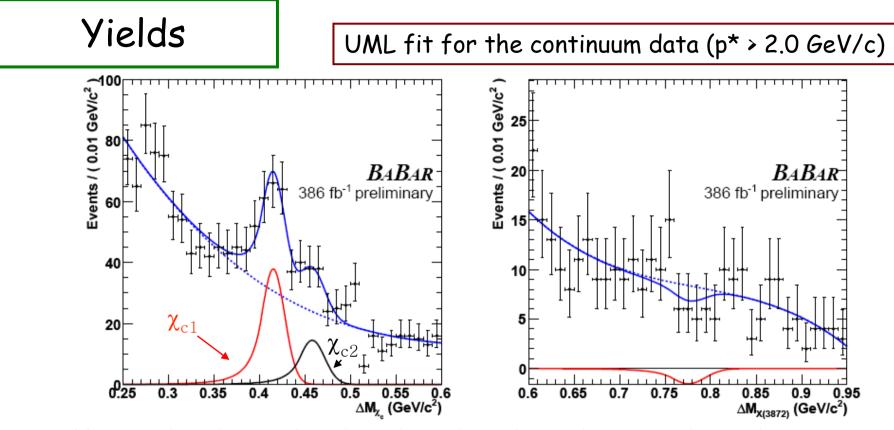
- The ε_r depends on p* and $\cos\theta^*$ of χ_c because of p*(J/ ψ) > 2.0 GeV/c and lower coverage in endcap.
- We need to correct the single particle MC ϵ_r using the weight matrix of p^{*} and cos θ^* and an efficiency matrix in bins of p^{*} and cos θ^* .


$$\epsilon_r = w_{1i}^{p^*} \epsilon_{ij} w_{j1}^{\cos \theta^*}$$
 i=1,6
j=1,5

W. Park@DPF + JPS 2006

- The ε_v is dependent on the number of photons in the event.
- We need:

- The efficiency as a function of photon multiplicity $\epsilon_v(N_\gamma)$
- N_{γ} distribution of signal events.
- The ε_v is the weighted average of $\varepsilon_v (N_\gamma)$ [weighted by the fraction of N_γ].
- Corrected by data-to-MC scale from the control sample (~ 1%).
- An alternative N_{γ} distribution (without sideband distribution) is used to estimate systematics.


- The ε_s is dependent on the N_{ch} in the event.
- We need:

- The efficiency as a function of charged track multiplicity $\epsilon_s(N_{ch})$
- N_{ch} distribution of signal events.
- The ε_s is the weighted average of $\varepsilon_s(N_{ch})$ [weighted by the fraction of N_{ch}].
- Corrected by data-to-MC scale from the control sample (~ 0.4%).
- An alternative N_{ch} distribution (w/o sideband distribution) is used to estimate systematics.

Systematic Error Study

· · · · · · · · · · · · · · · · · · ·			χ_{c1} (%)	χ_{c2} (%)	X(3872) (%)
Uncertainty from $p^*/cos\theta^*$ distribution	•	$p^*/\cos\theta^*$ correction	13.3	26.5	28.3
$e^{-[p_0+p_1(\Delta M)+p_2(\Delta M)^2]}$, uncertainty of δ ar	nd β	pdf	3.5	11.2	15.1
		Tracking	0.2	0.2	0.2
		Charged PID	7.2	7.2	7.2
PDG 2006 $\mathcal{B}(\chi_{c1} \rightarrow \gamma J/\psi) = (35.6 \pm 1.9)\% \text{ and } \mathcal{B}(\chi_{c2} \rightarrow \gamma J/\psi) = (20.2 \pm 1.9)\%$		Photon PID	1.8	1.8	1.8
$\mathcal{B}(\chi_{c1} \to \gamma J/\psi) = (5.05 \pm 1.9)\%$ and $\mathcal{B}(\chi_{c2} \to \gamma J/\psi) = (20.2 \pm 1.9)\%$ $\mathcal{B}(J/\psi \to e^+e^-) = (5.94 \pm 0.06)\%$ and $\mathcal{B}(J/\psi \to \mu^+\mu^-) = (5.93)\%$		\blacksquare BF_{final}	5.4	5.0	0.7
$\mathcal{D}(J/\psi \rightarrow e^-e^-) = (J.54 \pm 0.00)/0$ and $\mathcal{D}(J/\psi \rightarrow \mu^-\mu^-) = (J.54$		Background	7.1	5.4	_
Deviation from alternative distribution	←	π^0 veto	1.3	1.3	1.3
of N_{γ} / N_{ch} or $\varepsilon_v(N_{\gamma}) / \varepsilon_s(N_{ch})$.	← /	Splitoff rejection	0.4	0.4	0.4
	. /	Total	18.1	30.7	33.1
			-		

ISR $\psi(2S)$ background is estimated from MC as 9.5 ev for the χ_{c1} and 3.0 ev for the $\chi_{c2}.$

- Offset and scale are fixed to the values from the control sample.
- For the χ_c search:

 $N_{\chi_{c1}} = 134^{+23}_{-22}$ with 6.6 σ statistical significance $N_{\chi_{c2}} = 56^{+19}_{-18} \ (< 80 @ 90\% C.L.)$ with 3.2 σ significance

• For the X(3872) search:

 $N_{X(3872)} = -8.0 \pm 11 \ (< 15 @ 90\% \text{ C.L.})$

Oct 30, 2006

W. Park@DPF + JPS 2006

Result

 $N_{fit} = \sigma \cdot \mathcal{L} \cdot \mathcal{B} \cdot \epsilon$

$$N_{fit}^{e^+e^-} = \sigma \cdot \mathcal{L} \cdot \mathcal{B}(\chi_c \to \gamma J/\psi) \cdot \mathcal{B}(J/\psi \to e^+e^-) \cdot \epsilon_{e^+e^-}$$
$$N_{fit}^{\mu^+\mu^-} = \sigma \cdot \mathcal{L} \cdot \mathcal{B}(\chi_c \to \gamma J/\psi) \cdot \mathcal{B}(J/\psi \to \mu^+\mu^-) \cdot \epsilon_{\mu^+\mu^-}$$

$$N_{fit}^{\ell^+\ell^-} = N_{fit}^{e^+e^-} + N_{fit}^{\mu^+\mu^-}$$
$$= \sigma \cdot \mathcal{L} \cdot \mathcal{B}(\chi_c \to \gamma J/\psi) \cdot \left[\mathcal{B}(J/\psi \to e^+e^-) + \mathcal{B}(J/\psi \to \mu^+\mu^-)\right] \cdot \epsilon_{\ell^+\ell^-}^{avg}$$

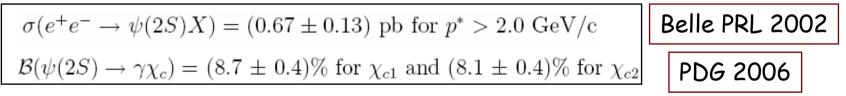
	χ_{c1}	χ_{c2}	X(3872)	
N_{fit}	134^{+23}_{-22}	56^{+19}_{-18}	$-8.0{\pm}11$	
		(< 80 @90% C.L.)	(< 15 @90% C.L.)	
$\epsilon_r (\%)$	10.1	9.3	8.4	
ϵ_v (%)	79.9	79.9	79.9	
$\epsilon_s(\%)$	95.8	95.8	95.8	
$\epsilon \ (\%) \ (= \epsilon_r \cdot \epsilon_v \cdot \epsilon_s)$	7.7	7.1	6.4	
BF_{final} (%)	4.2	2.4	11.9	
\mathcal{L} (fb ⁻¹)	386	386	386	
$\sigma(e^+e^- \to \chi_c X)$	$107{\pm}18\pm19$	$85^{+28}_{-27} \pm 26$	$-2.7 \pm 3.7 \pm 1.0$	
$\cdot \mathcal{B}(X \to (N_{ch} > 2))$ (fb)				
@90% C.L. (fb)		< 135	< 5.1	

For the X(3872), we assume BF of X(3872) $\rightarrow \gamma J/\psi$ is 100%.

Oct 30, 2006

W. Park@DPF + JPS 2006

Prompt $\psi(2S)$ feed-down


For the cross-section of prompt χ_c production, we should subtract prompt $\psi(2S)$ contribution.

It is (58.3 ± 11.6) fb for the χ_{c1} (54.3 ± 10.9) fb for the χ_{c2}

compared to our measured values (107 \pm 26) fb for χ_{c1} and (85 \pm 38) fb for $\chi_{c2}.$

from

Conclusion

After subtraction of prompt $\psi(2S)$ contribution, prompt χ_c production cross-sections in continuum are:

 $\sigma(e^+e^- \to \chi_{c1,direct}X) \cdot \mathcal{B}(X \to (N_{ch} > 2)) = (49 \pm 18 \pm 23) \text{ fb}$

(< 86 fb @90% C.L.), $\sigma(e^+e^- \to \chi_{c2,direct}X) \cdot \mathcal{B}(X \to (N_{ch} > 2)) = (31 \pm 28 \pm 28) \text{ fb}$

(< 87 fb @90% C.L.).

While χ_c production has been observed in e⁺e⁻ annihilation ~ 10.6 GeV, the measured cross-sections are compatible with the expected contributions from prompt $\psi(2S)$ production feed-down to $\chi_{c.}$ No evidence of prompt χ_c production.

Prompt X(3872) production in continuum is :

 $\sigma(e^+e^- \to X(3872)X) \cdot \mathcal{B}(X(3872) \to \gamma J/\psi) \cdot \mathcal{B}(X \to (N_{ch} > 2))$

 $= (-2.7 \pm 3.7 \pm 1.0)$ fb (< 5.1 fb @90% C.L.).

No evidence of prompt X(3872) in e⁺e⁻ annihilation.